Inclination and relativistic effects in the outburst evolution of black hole transients

Monthly Notices of the Royal Astronomical Society 432:2 (2013) 1330-1337

Authors:

T Muñoz-Darias, M Coriat, DS Plant, G Ponti, RP Fender, RJH Dunn

Abstract:

We have systematically studied the effect of the orbital inclination in the outburst evolution of black hole transients. We have included all the systems observed by the Rossi X-ray Timing Explorer in which the thermal, accretion disc component becomes strongly dominant at some point of the outburst. Inclination is found to modify the shape of the tracks that these systems display in the colour/luminosity diagrams traditionally used for their study. Black hole transients seen at low inclination reach softer spectra and their accretion discs look cooler than those observed closer to edge-on. This difference can be naturally explained by considering inclination-dependent relativistic effects on accretion discs. © 2013 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society.

Isothermal dust models of herschel-ATLAS* galaxies

Monthly Notices of the Royal Astronomical Society 436:3 (2013) 2435-2453

Authors:

DJB Smith, MJ Hardcastle, MJ Jarvis, SJ Maddox, L Dunne, DG Bonfield, S Eales, S Serjeant, MA Thompson, M Baes, DL Clements, A Cooray, G De Zotti, J Gonzàlez-Nuevo, P van der Werf, J Virdee, N Bourne, A Dariush, R Hopwood, E Ibar, E Valiante

Abstract:

We use galaxies from the Herschel-ATLAS (H-ATLAS) survey, and a suite of ancillary simulations based on an isothermal dust model, to study our ability to determine the effective dust temperature, luminosity and emissivity index of 250 μm selected galaxies in the local Universe (z < 0.5). As well as simple far-infrared spectral energy distribution (SED) fitting of individual galaxies based on X2 minimization, we attempt to derive the best global isothermal properties of 13 826 galaxies with reliable optical counterparts and spectroscopic redshifts. Using our simulations, we highlight the fact that applying traditional SED fitting techniques to noisy observational data in the Herschel Space Observatory bands introduces artificial anticorrelation between derived values of dust temperature and emissivity index. This is true even for galaxies with the most robust statistical detections in our sample, making the results of such fitting difficult to interpret.We apply a method to determine the best-fitting global values of isothermal effective temperature and emissivity index for z < 0.5 galaxies in H-ATLAS, deriving Teff = 22.3 ± 0.1K and β = 1.98 ± 0.02 (or Teff = 23.5 ± 0.1K and β = 1.82 ± 0.02 if we attempt to correct for bias by assuming that Teff and βeff are independent and normally distributed). We use our technique to test for an evolving emissivity index, finding only weak evidence. The median dust luminosity of our sample is log10(Ldust/L⊙) = 10.72 ± 0.05, which (unlike Teff) shows little dependence on the choice of β used in our analysis, including whether it is variable or fixed. In addition, we use a further suite of simulations based on a fixed emissivity index isothermal model to emphasize the importance of the H-ATLAS PACS data for deriving dust temperatures at these redshifts, even though they are considerably less sensitive than the SPIRE data. Finally, we show that the majority of galaxies detected by H-ATLAS are normal star-forming galaxies, though with a substantial minority (~31 per cent) falling in the Luminous Infrared Galaxy category. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Measurement of Z boson production in Pb-Pb collisions at √SNN = 2.76 TeV with the ATLAS detector

Physical Review Letters 110:2 (2013) 022301-1-022301-18

Authors:

G Aad, T Abajyan, B Abbott, J Abdallah, S Abdel Khalek, AA Abdelalim, O Abdinov, R Aben, B Abi, M Abolins, OS Abou Zeid, H Abramowicz, H Abreu, BS Acharya, L Adamczyk, DL Adams, TN Addy, J Adelman, S Adomeit, P Adragna, T Adye, S Aefsky, JA Aguilar-Saavedra, M Agustoni, M Aharrouche, SP Ahlen, F Ahles, A Ahmad, M Ahsan, G Aielli, T Akdogan, TPA Åkesson, G Akimoto, AV Akimov, MS Alam, MA Alam, J Albert, S Albrand, M Aleksa, IN Aleksandrov, F Alessandria, C Alexa, G Alexander, G Alexandre, T Alexopoulos, M Alhroob, M Aliev, G Alimonti, J Alison, BMM Allbrooke, PP Allport, SE Allwood-Spiers, J Almond, A Aloisio, R Alon, A Alonso, F Alonso, A Altheimer, B Alvarez Gonzalez, MG Alviggi, K Amako, C Amelung, VV Ammosov, SP Amor Dos Santos, A Amorim, N Amram, C Anastopoulos, LS Ancu, N Andari, T Andeen, CF Anders, G Anders, KJ Anderson, A Andreazza, V Andrei, ML Andrieux, XS Anduaga, P Anger, A Angerami, F Anghinolfi, A Anisenkov, N Anjos, A Annovi, A Antonaki, M Antonelli, A Antonov, J Antos, F Anulli, M Aoki, S Aoun, L Aperio Bella, R Apolle, G Arabidze, I Aracena, Y Arai, ATH Arce, S Arfaoui, JF Arguin, E Arik, M Arik

Abstract:

The ATLAS experiment has observed 1995 Z boson candidates in data corresponding to 0:15 nb-1 of integrated luminosity obtained in the 2011 LHC Pb + Pb run at √SNN = 2.76 TeV. The Z bosons are reconstructed via dielectron and dimuon decay channels, with a background contamination of less than 3%. Results from the two channels are consistent and are combined. Within the statistical and systematic uncertainties, the per-event Z boson yield is proportional to the number of binary collisions estimated by the Glauber model. The elliptic anisotropy of the azimuthal distribution of the Z boson with respect to the event plane is found to be consistent with zero.

Measurement of differential top-quark-pair production cross sections in pp collisions at √s = 7TeV

European Physical Journal C 73:3 (2013) 1-29

Authors:

S Chatrchyan, V Khachatryan, AM Sirunyan, A Tumasyan, W Adam, E Aguilo, T Bergauer, M Dragicevic, J Erö, C Fabjan, M Friedl, R Frühwirth, VM Ghete, J Hammer, N Hörmann, J Hrubec, M Jeitler, W Kiesenhofer, V Knünz, M Krammer, I Krätschmer, D Liko, I Mikulec, M Pernicka, B Rahbaran, C Rohringer, H Rohringer, R Schöfbeck, J Strauss, A Taurok, W Waltenberger, G Walzel, E Widl, CE Wulz, V Mossolov, N Shumeiko, J Suarez Gonzalez, M Bansal, S Bansal, T Cornelis, EA de Wolf, X Janssen, S Luyckx, L Mucibello, S Ochesanu, B Roland, R Rougny, M Selvaggi, Z Staykova, H Van Haevermaet, P Van Mechelen, N Van Remortel, A Van Spilbeeck, F Blekman, S Blyweert, J D'Hondt, R Gonzalez Suarez, A Kalogeropoulos, M Maes, A Olbrechts, W Van Doninck, P Van Mulders, GP Van Onsem, I Villella, B Clerbaux, G de Lentdecker, V Dero, APR Gay, T Hreus, A Léonard, PE Marage, A Mohammadi, T Reis, L Thomas, G Vander Marcken, C Vander Velde, P Vanlaer, J Wang, V Adler, K Beernaert, A Cimmino, S Costantini, G Garcia, M Grunewald, B Klein, J Lellouch, A Marinov, J Mccartin, AA Ocampo Rios, D Ryckbosch, N Strobbe, F Thyssen, M Tytgat, S Walsh, E Yazgan, N Zaganidis, S Basegmez, G Bruno, R Castello, L Ceard

Abstract:

Normalised differential top-quark-pair production cross sections are measured in pp collisions at a centre-of-mass energy of 7 TeVat the LHC with the CMS detector using data recorded in 2011 corresponding to an integrated luminosity of 5. 0 fb-1. The measurements are performed in the lepton+jets decay channels (e+jets and μ+jets) and the dilepton decay channels (e+}e-, μ+μ-, and μ±e∓). The tt̄ differential cross section is measured as a function of kinematic properties of the final-state charged leptons and jets associated to b quarks, as well as those of the top quarks and the tt̄ system. The data are compared with several predictions from perturbative QCD calculations up to approximate next-to-next-to-leading-order precision. No significant deviations from the standard model are observed. © 2013 CERN for the benefit of the CMS collaboration.

Measurement of isolated-photon pair production in pp collisions at √s=7TeV with the ATLAS detector

Journal of High Energy Physics 2013:1 (2013)

Authors:

G Aad, T Abajyan, B Abbott, J Abdallah, SA Khalek, AA Abdelalim, O Abdinov, R Aben, B Abi, M Abolins, OS Abouzeid, H Abramowicz, H Abreu, BS Acharya, L Adamczyk, DL Adams, TN Addy, J Adelman, S Adomeit, P Adragna, T Adye, S Aefsky, JA Aguilar-Saavedra, M Agustoni, M Aharrouche, SP Ahlen, F Ahles, A Ahmad, M Ahsan, G Aielli, TPA Åkesson, G Akimoto, AV Akimov, MS Alam, MA Alam, J Albert, S Albrand, M Aleksa, IN Aleksandrov, F Alessandria, C Alexa, G Alexander, G Alexandre, T Alexopoulos, M Alhroob, M Aliev, G Alimonti, J Alison, BMM Allbrooke, PP Allport, SE Allwood-Spiers, J Almond, A Aloisio, R Alon, A Alonso, F Alonso, A Altheimer, BA Gonzalez, MG Alviggi, K Amako, C Amelung, VV Ammosov, SP Amor Dos Santos, A Amorim, N Amram, C Anastopoulos, LS Ancu, N Andari, T Andeen, CF Anders, G Anders, KJ Anderson, A Andreazza, V Andrei, ML Andrieux, XS Anduaga, S Angelidakis, P Anger, A Angerami, F Anghinolfi, A Anisenkov, N Anjos, A Annovi, A Antonaki, M Antonelli, A Antonov, J Antos, F Anulli, M Aoki, S Aoun, L Aperio Bella, R Apolle, G Arabidze, I Aracena, Y Arai, ATH Arce, S Arfaoui, JF Arguin, S Argyropoulos, E Arik

Abstract:

The ATLAS experiment at the LHC has measured the production cross section of events with two isolated photons in the final state, in proton-proton collisions at √s=7TeV . The full data set collected in 2011, corresponding to an integrated luminosity of 4.9 fb-1, is used. The amount of background, from hadronic jets and isolated electrons, is estimated with data-driven techniques and subtracted. The total cross section, for two isolated photons with transverse energies above 25 GeV and 22 GeV respectively, in the acceptance of the electromagnetic calorimeter (|η| < 1.37 and 1.52 < |η| < 2.37) and with an angular separation ΔR > 0.4, is 44.0-4.2+3.2 pb. The differential cross sections as a function of the di-photon invariant mass, transverse momentum, azimuthal separation, and cosine of the polar angle of the largest transverse energy photon in the Collins-Soper di-photon rest frame are also measured. The results are compared to the prediction of leading-order parton-shower and next-to-leading-order and next-to-next-to-leading-order parton-level generators.[Figure not available: see fulltext.] © 2013 CERN for the benefit of the ATLAS collaboration.