KMOS: Assembly, integration and testing of three 0.8-2.5 micron spectrographs

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

RJ Masters, IJ Lewis, IAJ Tosh, M Tecza, J Lynn, REJ Watkins, A Clack, RL Davies, NA Thatte, M Tacon, R Makin, J Temple, A Pearce

Abstract:

KMOS is a second generation instrument in construction for use at the European Southern Observatory (ESO) Very Large Telescope (VLT). It operates in the near-infrared (0.8 to 2.5 microns) and employs 24 deployable, image slicing integral field units (IFUs) feeding three spectrographs. The spectrographs are designed and built by a partnership of the University of Oxford and Rutherford Appleton Laboratories (RAL). We describe the assembly, integration and alignment procedures involved in the construction of these spectrographs in detail. We also present the results of the cryogenic optical tests, including the first data taken through the full spectrograph optical train and the details of the test facility and procedures involved. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Recent progress on the KMOS multi-object integral-field spectrograph for ESO VLT

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

R Sharples, R Bender, A Agudo Berbel, R Bennett, N Bezawada, N Bouché, D Bramall, M Casali, M Cirasuolo, P Clark, M Cliffe, R Davies, R Davies, N Drory, M Dubbeldam, A Fairley, G Finger, R Genzel, R Haefner, A Hess, P Jeffers, I Lewis, D Montgomery, J Murray, B Muschielok, N Förster Schreiber, J Pirard, S Ramsay-Howat, P Rees, J Richter, D Robertson, I Robson, S Rolt, R Saglia, J Schlichter, M Tecza, S Todd, M Wegner, E Wiezorrek

Abstract:

KMOS is a near-infrared multi-object integral-field spectrometer which is one of a suite of second-generation instruments under construction for the VLT. The instrument is being built by a consortium of UK and German institutes working in partnership with ESO and is now in the manufacture, integration and test phase. In this paper we present an overview of recent progress with the design and build of KMOS and present the first results from the subsystem test and integration. © 2010 Copyright SPIE - The International Society for Optical Engineering.

The Oxford SWIFT spectrograph: First commissioning and on-sky results

Proceedings of SPIE - The International Society for Optical Engineering 7735:PART 1 (2010)

Authors:

N Thatte, M Tecza, F Clarke, T Goodsall, L Fogarty, R Houghton, G Salter, N Scott, RL Davies, A Bouchez, R Dekany

Abstract:

The Oxford SWIFT spectrograph, an I & z band (6500-10500 A) integral field spectrograph, is designed to operate as a facility instrument at the 200 inch Hale Telescope on Palomar Mountain, in conjunction with the Palomar laser guide star adaptive optics system PALAO (and its upgrade to PALM3000). SWIFT provides spectra at R(≡λ/Δλ)∼4000 of a contiguous two-dimensional field, 44 x 89 spatial pixels (spaxels) in size, at spatial scales of 0.235″;, 0.16″, and 0.08″ per spaxel. It employs two 250μm thick, fully depleted, extremely red sensitive 4k X 2k CCD detector arrays (manufactured by LBNL) that provide excellent quantum efficiency out to 1000 nm. We describe the commissioning observations and present the measured values of a number of instrument parameters. We also present some first science results that give a taste of the range of science programs where SWIFT can have a substantial impact. © 2010 Copyright SPIE - The International Society for Optical Engineering.

Updated search for the flavor-changing neutral-current decay D0→μ⊃+μ⊃- in pp̄ collisions at √s=1.96 TeV

Physical Review D - Particles, Fields, Gravitation and Cosmology 82:9 (2010)

Authors:

T Aaltonen, B Álvarez González, S Amerio, D Amidei, A Anastassov, A Annovi, J Antos, G Apollinari, JA Appel, A Apresyan, T Arisawa, A Artikov, J Asaadi, W Ashmanskas, B Auerbach, A Aurisano, F Azfar, W Badgett, A Barbaro-Galtieri, VE Barnes, BA Barnett, P Barria, P Bartos, M Bauce, G Bauer, F Bedeschi, D Beecher, S Behari, G Bellettini, J Bellinger, D Benjamin, A Beretvas, A Bhatti, M Binkley, D Bisello, I Bizjak, KR Bland, C Blocker, B Blumenfeld, A Bocci, A Bodek, D Bortoletto, J Boudreau, A Boveia, B Brau, L Brigliadori, A Brisuda, C Bromberg, E Brucken, M Bucciantonio, J Budagov, HS Budd, S Budd, K Burkett, G Busetto, P Bussey, A Buzatu, S Cabrera, C Calancha, S Camarda, M Campanelli, M Campbell, F Canelli, A Canepa, B Carls, D Carlsmith, R Carosi, S Carrillo, S Carron, B Casal, M Casarsa, A Castro, P Catastini, D Cauz, V Cavaliere, M Cavalli-Sforza, A Cerri, L Cerrito, YC Chen, M Chertok, G Chiarelli, G Chlachidze, F Chlebana, K Cho, D Chokheli, JP Chou, WH Chung, YS Chung, CI Ciobanu, MA Ciocci, A Clark, D Clark, G Compostella, ME Convery, J Conway, M Corbo, M Cordelli, CA Cox, DJ Cox, F Crescioli

Abstract:

We report on a search for the flavor-changing neutral-current decay D0→μ⊃+μ⊃- in pp̄ collisions at √s=1.96TeV using 360pb⊃-1 of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. A displaced vertex trigger selects long-lived D0 candidates in the μ⊃+μ⊃-, π⊃+π⊃-, and K⊃-π⊃+ decay modes. We use the Cabibbo-favored D0→K⊃- π⊃+ channel to optimize the selection criteria in an unbiased manner, and the kinematically similar D0→π⊃+π⊃- channel for normalization. We set an upper limit on the branching fraction B(D0→μ⊃+μ⊃-)<2.1×10⊃-7(3.0×10⊃-7) at the 90% (95%) confidence level. © 2010 The American Physical Society.

Galaxy Zoo Supernovae

ArXiv 1011.2199 (2010)

Authors:

AM Smith, S Lynn, M Sullivan, CJ Lintott, PE Nugent, J Botyanszki, M Kasliwal, R Quimby, SP Bamford, LF Fortson, K Schawinski, I Hook, S Blake, P Podsiadlowski, J Joensson, A Gal-Yam, I Arcavi, DA Howell, JS Bloom, J Jacobsen, SR Kulkarni, NM Law, EO Ofek, R Walters

Abstract:

This paper presents the first results from a new citizen science project: Galaxy Zoo Supernovae. This proof of concept project uses members of the public to identify supernova candidates from the latest generation of wide-field imaging transient surveys. We describe the Galaxy Zoo Supernovae operations and scoring model, and demonstrate the effectiveness of this novel method using imaging data and transients from the Palomar Transient Factory (PTF). We examine the results collected over the period April-July 2010, during which nearly 14,000 supernova candidates from PTF were classified by more than 2,500 individuals within a few hours of data collection. We compare the transients selected by the citizen scientists to those identified by experienced PTF scanners, and find the agreement to be remarkable - Galaxy Zoo Supernovae performs comparably to the PTF scanners, and identified as transients 93% of the ~130 spectroscopically confirmed SNe that PTF located during the trial period (with no false positive identifications). Further analysis shows that only a small fraction of the lowest signal-to-noise SN detections (r > 19.5) are given low scores: Galaxy Zoo Supernovae correctly identifies all SNe with > 8{\sigma} detections in the PTF imaging data. The Galaxy Zoo Supernovae project has direct applicability to future transient searches such as the Large Synoptic Survey Telescope, by both rapidly identifying candidate transient events, and via the training and improvement of existing machine classifier algorithms.