A chemical survey of exoplanets with ARIEL

Experimental Astronomy Springer 46:1 (2018) 135-209

Authors:

Giovanna Tinetti, Pierre Drossart, Paul Eccleston, Paul Hartogh, Astrid Heske, Jérémy Leconte, Giusi Micela, Marc Ollivier, Paul Eccleston, Göran Pilbratt, Ludovic Puig, Diego Turrini, Neil Bowles

Abstract:

Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. The Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL) has been selected by the European Space Agency as the next mediumclass science mission, M4, to address these scientific questions. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25-7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10-100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.

A hexagon in Saturn’s northern stratosphere surrounding the emerging summertime polar vortex

Nature Communications Springer Nature 9 (2018) 3564

Authors:

LN Fletcher, GS Orton, JA Sinclair, S Guerlet, PL Read, A Antunano, RK Achterberg, FM Flasar, Patrick Irwin, GL Bjoraker, J Hurley, BE Hesman, M Segura, N Gorius, A Mamoutkine, SB Calcutt

Abstract:

Saturn’s polar stratosphere exhibits the seasonal growth and dissipation of broad, warm vortices poleward of ~75° latitude, which are strongest in the summer and absent in winter. The longevity of the exploration of the Saturn system by Cassini allows the use of infrared spectroscopy to trace the formation of the North Polar Stratospheric Vortex (NPSV), a region of enhanced temperatures and elevated hydrocarbon abundances at millibar pressures. We constrain the timescales of stratospheric vortex formation and dissipation in both hemispheres. Although the NPSV formed during late northern spring, by the end of Cassini’s reconnaissance (shortly after northern summer solstice), it still did not display the contrasts in temperature and composition that were evident at the south pole during southern summer. The newly formed NPSV was bounded by a strengthening stratospheric thermal gradient near 78°N. The emergent boundary was hexagonal, suggesting that the Rossby wave responsible for Saturn’s long-lived polar hexagon—which was previously expected to be trapped in the troposphere—can influence the stratospheric temperatures some 300 km above Saturn’s clouds.

The DREAMS Experiment Onboard the Schiaparelli Module of the ExoMars 2016 Mission: Design, Performances and Expected Results

SPACE SCIENCE REVIEWS 214:6 (2018) UNSP 103

Authors:

F Esposito, S Debei, C Bettanini, C Molfese, I Arruego Rodriguez, G Colombatti, A-M Harri, F Montmessin, C Wilson, A Aboudan, P Schipani, L Marty, FJ Alvarez, V Apestigue, G Bellucci, J-J Berthelier, JR Brucato, SB Calcutt, S Chiodini, F Cortecchia, F Cozzolino, F Cucciarre, N Deniskina, G Deprez, G Di Achille, F Ferri, F Forget, G Franzese, E Friso, M Genzer, R Hassen-Kodja, H Haukka, M Hieta, JJ Jimenez, J-L Josset, H Kahanpaa, O Karatekin, G Landis, L Lapauw, R Lorenz, J Martinez-Oter, V Mennella, D Moehlmann, D Moirin, R Molinaro, T Nikkanen, E Palomba, MR Patel, J-P Pommereau, CI Popa, S Rafkin, P Rannou, NO Renno, J Rivas, W Schmidt, E Segato, S Silvestro, A Spiga, D Toledo, R Trautner, F Valero, L Vazquez, F Vivat, O Witasse, M Yela, R Mugnuolo, E Marchetti, S Pirrotta

Great Expectations: Plans and Predictions for New Horizons Encounter With Kuiper Belt Object 2014 MU69 (“Ultima Thule”)

Geophysical Research Letters American Geophysical Union (AGU) 45:16 (2018) 8111-8120

Authors:

Jeffrey M Moore, William B McKinnon, Dale P Cruikshank, G Randall Gladstone, John R Spencer, S Alan Stern, Harold A Weaver, Kelsi N Singer, Mark R Showalter, William M Grundy, Ross A Beyer, Oliver L White, Richard P Binzel, Marc W Buie, Bonnie J Buratti, Andrew F Cheng, Carly Howett, Cathy B Olkin, Alex H Parker, Simon B Porter, Paul M Schenk, Henry B Throop, Anne J Verbiscer, Leslie A Young, Susan D Benecchi, Veronica J Bray, Carrie L Chavez, Rajani D Dhingra, Alan D Howard, Tod R Lauer, CM Lisse, Stuart J Robbins, Kirby D Runyon, Orkan M Umurhan

The DREAMS experiment onboard the Schiaparelli module of the ExoMars 2016 mission: Design, performances and expected results

Space Science Reviews Springer Verlag 214:103 (2018)

Authors:

F Esposito, S Debei, C Bettanini, C Molfese, I Arruego Rodriguez, G Colombatti, A-M Harri, F Montmessin, Colin Wilson, A Aboudan, P Schipani, L Marty, FJ Alvarez, V Apestigue, G Bellucci, J-J Berthelier, Simon Calcutt, S Chiodini, F Cortecchia, F Cozzolino, F Cucciarre, N Deniskina, G Deprez, G Di Achille, F Ferri, F Forget, G Franzese, E Friso, M Genzer, R Hassen-Kodja, H Haukka, M Hieta, JJ Jimenez, J-L Josset, H Kahanpaa, O Karatekin, G Landis, L Lapauw, R Lorenz, J Martinez-Oter, V Mennella, D Moehlmann, D Moirin, R Molinaro, T Nikkanen, E Palomba, J-P Pommereau, CI Popa

Abstract:

The first of the two missions foreseen in the ExoMars program was successfully launched on 14th March 2016. It included the Trace Gas Orbiter and the Schiaparelli Entry descent and landing Demonstrator Module. Schiaparelli hosted the DREAMS instrument suite that was the only scientific payload designed to operate after the touchdown. DREAMS is a meteorological station with the capability of measuring the electric properties of the Martian atmosphere. It was a completely autonomous instrument, relying on its internal battery for the power supply. Even with low resources (mass, energy), DREAMS would be able to perform novel measurements on Mars (atmospheric electric field) and further our understanding of the Martian environment, including the dust cycle. DREAMS sensors were designed to operate in a very dusty environment, because the experiment was designed to operate on Mars during the dust storm season (October 2016 in Meridiani Planum). Unfortunately, the Schiaparelli module failed part of the descent and the landing and crashed onto the surface of Mars. Nevertheless, several seconds before the crash, the module central computer switched the DREAMS instrument on, and sent back housekeeping data indicating that the DREAMS sensors were performing nominally. This article describes the instrument in terms of scientific goals, design, working principle and performances, as well as the results of calibration and field tests. The spare model is mature and available to fly in a future mission.