A hexagon in Saturn’s northern stratosphere surrounding the emerging summertime polar vortex
Nature Communications Springer Nature 9 (2018) 3564
Abstract:
Saturn’s polar stratosphere exhibits the seasonal growth and dissipation of broad, warm vortices poleward of ~75° latitude, which are strongest in the summer and absent in winter. The longevity of the exploration of the Saturn system by Cassini allows the use of infrared spectroscopy to trace the formation of the North Polar Stratospheric Vortex (NPSV), a region of enhanced temperatures and elevated hydrocarbon abundances at millibar pressures. We constrain the timescales of stratospheric vortex formation and dissipation in both hemispheres. Although the NPSV formed during late northern spring, by the end of Cassini’s reconnaissance (shortly after northern summer solstice), it still did not display the contrasts in temperature and composition that were evident at the south pole during southern summer. The newly formed NPSV was bounded by a strengthening stratospheric thermal gradient near 78°N. The emergent boundary was hexagonal, suggesting that the Rossby wave responsible for Saturn’s long-lived polar hexagon—which was previously expected to be trapped in the troposphere—can influence the stratospheric temperatures some 300 km above Saturn’s clouds.The DREAMS Experiment Onboard the Schiaparelli Module of the ExoMars 2016 Mission: Design, Performances and Expected Results
SPACE SCIENCE REVIEWS 214:6 (2018) UNSP 103
Great Expectations: Plans and Predictions for New Horizons Encounter With Kuiper Belt Object 2014 MU69 (“Ultima Thule”)
Geophysical Research Letters American Geophysical Union (AGU) 45:16 (2018) 8111-8120
The DREAMS experiment onboard the Schiaparelli module of the ExoMars 2016 mission: Design, performances and expected results
Space Science Reviews Springer Verlag 214:103 (2018)
Abstract:
The first of the two missions foreseen in the ExoMars program was successfully launched on 14th March 2016. It included the Trace Gas Orbiter and the Schiaparelli Entry descent and landing Demonstrator Module. Schiaparelli hosted the DREAMS instrument suite that was the only scientific payload designed to operate after the touchdown. DREAMS is a meteorological station with the capability of measuring the electric properties of the Martian atmosphere. It was a completely autonomous instrument, relying on its internal battery for the power supply. Even with low resources (mass, energy), DREAMS would be able to perform novel measurements on Mars (atmospheric electric field) and further our understanding of the Martian environment, including the dust cycle. DREAMS sensors were designed to operate in a very dusty environment, because the experiment was designed to operate on Mars during the dust storm season (October 2016 in Meridiani Planum). Unfortunately, the Schiaparelli module failed part of the descent and the landing and crashed onto the surface of Mars. Nevertheless, several seconds before the crash, the module central computer switched the DREAMS instrument on, and sent back housekeeping data indicating that the DREAMS sensors were performing nominally. This article describes the instrument in terms of scientific goals, design, working principle and performances, as well as the results of calibration and field tests. The spare model is mature and available to fly in a future mission.Great Expectations: Plans and Predictions for New Horizons Encounter with Kuiper Belt Object 2014 MU69 ('Ultima Thule')
(2018)