Crater size-frequency distribution measurements and age of the Compton–Belkovich Volcanic Complex

Icarus Elsevier 273 (2016) 214-223

Authors:

KA Shirley, M Zanetti, B Jolliff, CH van der Bogert, H Hiesinger

Constraints on olivine-rich rock types on the Moon as observed by Diviner and M 3 : Implications for the formation of the lunar crust

Journal of Geophysical Research: Planets American Geophysical Union 121:7 (2016) 1342-1361

Authors:

Jessica Arnold, TD Glotch, PG Lucey, E Song, IR Thomas, NE Bowles, BT Greenhagen

Abstract:

We place upper limits on lunar olivine abundance using midinfrared (5–25 µm) data from the Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment (Diviner) along with effective emissivity spectra of mineral mixtures in a simulated lunar environment. Olivine-bearing, pyroxene-poor lithologies have been identified on the lunar surface with visible-near-infrared (VNIR) observations. Since the Kaguya Spectral Profiler (SP) VNIR survey of olivine-rich regions is the most complete to date, we focus this work on exposures identified by that study. We first confirmed the locations with VNIR data from the Moon Mineralogy Mapper (M3) instrument. We then developed a Diviner olivine index from our laboratory data which, along with M3and Lunar Reconnaissance Orbiter Camera wide-angle camera data, was used to select the geographic area over which Diviner emissivity data were extracted. We calculate upper limits on olivine abundance for these areas using laboratory emissivity spectra of anorthite-forsterite mixtures acquired under lunar-like conditions. We find that these exposures have widely varying olivine content. In addition, after applying an albedo-based space weathering correction to the Diviner data, we find that none of the areas are unambiguously consistent with concentrations of forsterite exceeding 90 wt %, in contrast to the higher abundance estimates derived from VNIR data.

Effects of varying environmental conditions on emissivity spectra of bulk lunar soils: Application to Diviner thermal infrared observations of the Moon

Icarus Elsevier 283 (2016) 326-342

Authors:

Kerri L Donaldson Hanna, BT Greenhagen, WR Patterson, CM Pieters, JF Mustard, Neil E Bowles, DA Paige, TD Glotch, C Thompson

Abstract:

Currently, few thermal infrared measurements exist of fine particulate ( < 63 μm) analogue samples (e.g. minerals, mineral mixtures, rocks, meteorites, and lunar soils) measured under simulated lunar condi- tions. Such measurements are fundamental for interpreting thermal infrared (TIR) observations by the Diviner Lunar Radiometer Experiment (Diviner) onboard NASA’s Lunar Reconnaissance Orbiter as well as future TIR observations of the Moon and other airless bodies. In this work, we present thermal in- frared emissivity measurements of a suite of well-characterized Apollo lunar soils and a fine particu- late ( < 25 μm) San Carlos olivine sample as we systematically vary parameters that control the near- surface environment in our vacuum chamber (atmospheric pressure, incident solar-like radiation, and sample cup temperature). The atmospheric pressure is varied between ambient (1000 mbar) and vacuum ( < 10^−3 mbar) pressures, the incident solar-like radiation is varied between 52 and 146 mW/cm 2 , and the sample cup temperature is varied between 325 and 405 K. Spectral changes are characterized as each parameter is varied, which highlight the sensitivity of thermal infrared emissivity spectra to the atmospheric pressure and the incident solar-like radiation. Finally spectral measurements of Apollo 15 and 16 bulk lunar soils are compared with Diviner thermal infrared observations of the Apollo 15 and 16 sam- pling sites. This comparison allows us to constrain the temperature and pressure conditions that best simulate the near-surface environment of the Moon for future laboratory measurements and to better interpret lunar surface compositions as observed by Diviner.

Space weathering effects in Diviner Lunar Radiometer multispectral infrared measurements of the lunar Christiansen Feature: Characteristics and mitigation

Icarus Elsevier 283 (2016) 343-351

Authors:

Paul G Lucey, Benjamin T Greenhagen, Eugenie Song, Jessica A Arnold, Myriam Lemelin, Kerri Donaldson Hanna, Neil E Bowles, Timothy D Glotch, David A Paige

Abstract:

Multispectral infrared measurements by the Diviner Lunar Radiometer Experiment on the Lunar Renaissance Orbiter enable the characterization of the position of the Christiansen Feature, a thermal infrared spectral feature that laboratory work has shown is proportional to the bulk silica content of lunar surface materials. Diviner measurements show that the position of this feature is also influenced by the changes in optical and physical properties of the lunar surface with exposure to space, the process known as space weathering. Large rayed craters and lunar swirls show corresponding Christiansen Feature anomalies. The space weathering effect is likely due to differences in thermal gradients in the optical surface imposed by the space weathering control of albedo. However, inspected at high resolution, locations with extreme compositions and Christiansen Feature wavelength positions - silica-rich and olivine-rich areas - do not have extreme albedos, and fall off the albedo- Christiansen Feature wavelength position trend occupied by most of the Moon. These areas demonstrate that the Christiansen Feature wavelength position contains compositional information and is not solely dictated by albedo. An optical maturity parameter derived from near-IR measurements is used to partly correct Diviner data for space weathering influences.

Simulation of source intensity variations from atmospheric dust for solar occultation Fourier transform infrared spectroscopy at Mars

Journal of Molecular Spectroscopy Elsevier 323 (2016) 78-85

Authors:

KS Olsen, GC Toon, K Strong