Investigating the effects of sum-frequency conversions and surface impedance uniformity in traveling wave superconducting parametric amplifiers

Journal of Applied Physics AIP Publishing 135:12 (2024) 124402

Authors:

Nikita Klimovich, Samuel Wood, Peter K Day, Boon-Kok Tan

Investigating the effects of sum-frequency conversions and surface impedance uniformity in traveling wave superconducting parametric amplifiers

Journal of Applied Physics AIP Publishing 135:12 (2024) 124402

Authors:

Nikita Klimovich, Samuel Wood, Peter K Day, Boon-Kok Tan

Abstract:

Traveling wave parametric amplifiers (TWPAs) offer the most promising solution for high gain, broadband, and quantum noise limited amplification at microwave frequencies. Experimental realization of TWPAs has proved challenging with often major discrepancies between the theoretically predicted and the measured gain performance of the devices. Here, we extend the conventional modeling techniques to account for spatial variation in the surface impedance of the thin film and the parametric sum-frequency conversions effect, which subsequently results in accurate reproduction of experimental device behavior. We further show that such an analysis may be critical to ensure fabricated TWPAs can operate as designed.

Non-degenerate-pump four-wave mixing kinetic inductance travelling-wave parametric amplifiers

Engineering Research Express IOP Publishing 6:1 (2024) 015068

Authors:

Joseph Christopher Longden, Boon Kok Tan

Abstract:

Kinetic inductance travelling-wave parametric amplifiers (KITWPAs) have been demonstrated to achieve high gain over broad bandwidths whilst achieving near quantum-limited noise performance, properties which are extremely important for many ultra-sensitive experiments. In early KITWPA designs, the requirement for phase-matching lead to the creation of a large zero-gain gap in the centre of the gain profile where the peak gain is, which also slightly narrows down the operational bandwidth of the device. This has been mitigated in more recent designs by introducing a DC bias to the KITWPA device, which allows the gap to be tuned away from the amplification band. However, the added DC biasing requires a more complicated experimental setup and potentially leads to unwanted heat leak in the cryogenic environment. Additionally, operation with a DC bias also become challenging at higher frequencies beyond the microwave regime. In this paper, we present the concept of a KITWPA operating in a non-degenerate-pump four-wave mixing (NP-4WM) regime, whereby the injection of two pump tones along with a weak signal results in a broad, flat gain profile that removes the zero-gain gap as well as eliminates the need for a DC bias and the complexities associated with it. We demonstrate how a NP-4WM KITWPA is feasible to achieve broadband amplification at a range of frequencies, first in the microwave range where most KITWPAs reported to-date have been successfully experimentally characterised. We then extend the designs to several millimetre (mm) bands to illustrate how we can use this technique to design a broadband front-end pre-amplifier that covers several Atacama Large Millimetre/sub-millimetre Array (ALMA) Bands.

Operation of kinetic-inductance travelling wave parametric amplifiers at millimetre wavelengths

Superconductor Science and Technology IOP Publishing 37 (2024) 035006

Authors:

Boon Tan, Nikita Klimovich, Ryan Stephenson, Farzad Faramarzi, Peter Day

Abstract:

It is expected that the operation of microwave Kinetic Inductance Travelling Wave Parametric Amplifiers (KITWPAs) can be extended to the millimetre (mm) and the sub-mm wavelength range as long as the frequency is below the gap frequency of the superconducting film. This paper presents possible mm-wave designs for KITWPAs based on microstrip transmission lines. Our device is designed based on the BCS (Bardeen-Cooper-Schrieffer) model which successfully reproduces the measured transmission profile, gain, bandwidth, and nonlinear response of a fabricated KITWPA operating in the Ka-band, and includes the millimetre-wave dielectric loss determined by fitting the quality factor of a Wband microstrip resonator. We suggest a layout for a KITWPA operating near 220 GHz that can be fabricated using the same superconducting properties as the Ka-band device and can be coupled to a waveguide system. We conclude the paper by extending the 220 GHz design to higher frequency regimes approaching 1 THz.

Engineering the thin film characteristics for optimal performance of superconducting kinetic inductance amplifiers using a rigorous modelling technique.

Open research Europe Faculty of 1000 2 (2023) 88

Authors:

Boon-Kok Tan, Faouzi Boussaha, Christine Chaumont, Joseph Longden, Javier Navarro Montilla

Abstract:

<b>Background:</b> Kinetic Inductance Travelling Wave Parametric Amplifiers (KITWPAs) are a variant of superconducting amplifier that can potentially achieve high gain with quantum-limited noise performance over broad bandwidth, which is important for many ultra-sensitive experiments. In this paper, we present a novel modelling technique that can better capture the electromagnetic behaviour of a KITWPA without the translation symmetry assumption, allowing us to flexibly explore the use of more complex transmission line structures and better predict their performance. <b>Methods:</b> In order to design a KITWPA with optimal performance, we investigate the use of different superconducting thin film materials, and compare their pros and cons in forming a high-gain low-loss medium feasible for amplification. We establish that if the film thickness can be controlled precisely, the material used has less impact on the performance of the device, as long as it is topologically defect-free and operating within its superconducting regime. With this insight, we propose the use of Titanium Nitride (TiN) film for our KITWPA as its critical temperature can be easily altered to suit our applications. We further investigate the topological effect of different commonly used superconducting transmission line structures with the TiN film, including the effect of various non-conducting materials required to form the amplifier. <b>Results:</b> Both of these comprehensive studies led us to two configurations of the KITWPA: 1) A low-loss 100 nm thick TiN coplanar waveguide amplifier, and 2) A compact 50 nm TiN inverted microstrip amplifier. We utilise the novel modelling technique described in the first part of the paper to explore and investigate the optimal design and operational setup required to achieve high gain with the broadest bandwidth for both KITWPAs, including the effect of loss. <b>Conclusions:</b> Finally, we conclude the paper with the actual layout and the predicted gain-bandwidth product of our KITWPAs.