Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii-Moriya interaction

arxiv (2018)

Authors:

D Cortes-Ortuno, M Beg, V Nehruji, L Breth, R Pepper, T Kluyver, G Downing, Thorsten Hesjedal, P Hatton, T Lancaster, R Hertel, O Hovorka, H Fangohr

Abstract:

Understanding the role of the Dzyaloshinskii-Moriya interaction (DMI) for the formation of helimagnetic order, as well as the emergence of skyrmions in magnetic systems that lack inversion symmetry, has found increasing interest due to the significant potential for novel spin based technologies. Candidate materials to host skyrmions include those belonging to the B20 group such as FeGe, known for stabilising Bloch-like skyrmions, interfacial systems such as cobalt multilayers or Pd/Fe bilayers on top of Ir(111), known for stabilising Neel-like skyrmions, and, recently, alloys with a crystallographic symmetry where anti-skyrmions are stabilised. Micromagnetic simulations have become a standard approach to aid the design and optimisation of spintronic and magnetic nanodevices and are also applied to the modelling of device applications which make use of skyrmions. Several public domain micromagnetic simulation packages such as OOMMF, MuMax3 and Fidimag already offer implementations of different DMI terms. It is therefore highly desirable to propose a so-called micromagnetic standard problem that would allow one to benchmark and test the different software packages in a similar way as is done for ferromagnetic materials without DMI. Here, we provide a sequence of well-defined and increasingly complex computational problems for magnetic materials with DMI. Our test problems include 1D, 2D and 3D domains, spin wave dynamics in the presence of DMI, and validation of the analytical and numerical solutions including uniform magnetisation, edge tilting, spin waves and skyrmion formation. This set of problems can be used by developers and users of new micromagnetic simulation codes for testing and validation and hence establishing scientific credibility.

Proposal for a micromagnetic standard problem for materials with Dzyaloshinskii-Moriya interaction

(2018)

Authors:

David Cortés-Ortuño, Marijan Beg, Vanessa Nehruji, Leoni Breth, Ryan Pepper, Thomas Kluyver, Gary Downing, Thorsten Hesjedal, Peter Hatton, Tom Lancaster, Riccardo Hertel, Ondrej Hovorka, Hans Fangohr

Topological surface state of α-Sn on InSb(001) as studied by photoemission

Physical Review B American Physical Society 97:7 (2018) 075101

Authors:

L Dudy, F Reis, F Adler, J Aulbach, LJ Collins-McIntyre, LB Duffy, HF Yang, YL Chen, Thorsten Hesjedal, ZK Liu, M Hoesch, S Muff, JH Dil, J Schaefer, R Claessen

Abstract:

We report on the electronic structure of the elemental topological semimetal α − Sn on InSb(001). High-resolution angle-resolved photoemission data allow us to observe the topological surface state (TSS) that is degenerate with the bulk band structure and show that the former is unaffected by different surface reconstructions. An unintentional p -type doping of the as-grown films was compensated by deposition of potassium or tellurium after the growth, thereby shifting the Dirac point of the surface state below the Fermi level. We show that, while having the potential to break time-reversal symmetry, iron impurities with a coverage of up to 0.25 monolayers do not have any further impact on the surface state beyond that of K or Te. Furthermore, we have measured the spin-momentum locking of electrons from the TSS by means of spin-resolved photoemission. Our results show that the spin vector lies fully in-plane, but it also has a finite radial component. Finally, we analyze the decay of photoholes introduced in the photoemission process, and by this gain insight into the many-body interactions in the system. Surprisingly, we extract quasiparticle lifetimes comparable to other topological materials where the TSS is located within a bulk band gap. We argue that the main decay of photoholes is caused by intraband scattering, while scattering into bulk states is suppressed due to different orbital symmetries of bulk and surface states.

Magnetic and structural depth profiles of Heusler alloy Co2FeAl0.5Si0.5 epitaxial films on Si(1 1 1).

Journal of physics. Condensed matter : an Institute of Physics journal 30:6 (2018) 065801

Authors:

Stephanie E Glover, Thomas Saerbeck, Barat Achinuq, Arsham Ghasemi, Demie Kepaptsoglou, Quentin M Ramasse, Shinya Yamada, Kohei Hamaya, Thomas PA Hase, Vlado K Lazarov, Gavin R Bell

Abstract:

The depth-resolved chemical structure and magnetic moment of [Formula: see text], thin films grown on Si(1 1 1) have been determined using x-ray and polarized neutron reflectometry. Bulk-like magnetization is retained across the majority of the film, but reduced moments are observed within 45[Formula: see text] of the surface and in a 25[Formula: see text] substrate-interface region. The reduced moment is related to compositional changes due to oxidation and diffusion, which are further quantified by elemental profiling using electron microscopy with electron energy loss spectroscopy. The accuracy of structural and magnetic depth-profiles obtained from simultaneous modeling is discussed using different approaches with different degree of constraints on the parameters. Our approach illustrates the challenges in fitting reflectometry data from these multi-component quaternary Heusler alloy thin films.

Real-Space Observation of Skyrmionium in a Ferromagnet-Magnetic Topological Insulator Heterostructure.

Nano letters ACS 18:2 (2018) 1057-1063

Authors:

S Zhang, F Kronast, G van der Laan, T Hesjedal

Abstract:

The combination of topological insulators, i.e., bulk insulators with gapless, topologically protected surface states, with magnetic order is a love-hate relationship that can unlock new quantum states and exotic physical phenomena, such as the quantum anomalous Hall effect and axion electrodynamics. Moreover, the unusual coupling between topological insulators and ferromagnets can also result in the formation of topological spin textures in the ferromagnetic layer. Skyrmions are topologically-protected magnetization swirls that are promising candidates for spintronics memory carriers. Here, we report on the observation of skyrmionium in thin ferromagnetic films coupled to a magnetic topological insulator. The occurrence of skyrmionium, which appears as a soliton composed of two skyrmions with opposite winding numbers, is tied to the ferromagnetic state of the topological insulator. Our work presents a new combination of two important classes of topological materials and may open the door to new topologically inspired information-storage concepts in the future.