Manipulation of skyrmion motion by magnetic field gradients
Abstract:
Full size CCD camera videos for https://www.nature.com/articles/s41467-018-04563-4Mode locking between helimagnetism and ferromagnetism
Abstract:
Non-collinear spin textures, such as spin spirals and skyrmions, exhibit rich emergent physics in their spin dynamics. Nevertheless, the potential to utilize their distinctive spin resonance characteristics for on-chip microwave magnonic applications is rarely explored. Here we demonstrate microwave emission and mode coupling from the resonating spin spiral lattice in a Cu2OSeO3/Pt/NiFe heterostructure. We use time-resolved resonant elastic X-ray scattering to visualize the exact vectorial spin precession modes from the two magnetic species in real time. Our results show that the ferromagnetic NiFe layer dynamically captures the excitation modes of the conical order in helimagnet Cu2OSeO3. The off-resonance NiFe spin precession is phase locked to the helimagnet with a fixed offset, thereby presenting distinct chiral dynamics. This demonstrates that the magnons produced in the process—referred to as helimagnons—can wirelessly transmit spin information at gigahertz frequencies, opening new avenues for on-chip microwave magnonics.