Gel-based morphological design of zirconium metal–organic frameworks
Chemical Science Royal Society of Chemistry (RSC) 8:5 (2017) 3939-3948
Local structure study of the orbital order/disorder transition in LaMnO3
Physical Review B American Physical Society 95:17 (2017) 174107
Abstract:
We use a combination of neutron and X-ray total scattering measurements together with pair distribution function (PDF) analysis to characterise the variation in local structure across the orbital order–disorder transition in LaMnO3. Our experimental data are inconsistent with a conventional order–disorder description of the transition, and reflect instead the existence of a discontinuous change in local structure between ordered and disordered states. Within the orbital-ordered regime, the neutron and X-ray PDFs are best described by a local structure model with the same local orbital arrangements as those observed in the average (long-range) crystal structure. We show that a variety of meaningfully-different local orbital arrangement models can give fits of comparable quality to the experimental PDFs collected within the disordered regime; nevertheless, our data show a subtle but consistent preference for the anisotropic Potts model proposed in Phys Rev. B 79, 174106 (2009). The key implications of this model are electronic and magnetic isotropy together with the loss of local inversion symmetry at the Mn site. We conclude with a critical assessment of the interpretation of PDF measurements when characterising local symmetry breaking in functional materials.Crystallographic and optical study of PbHfO3 crystals
Journal of Applied Crystallography International Union of Crystallography (IUCr) 50:2 (2017) 378-384
Doping dependence of collective spin and orbital excitations in the Spin-1 quantum antiferromagnet La₂₋ₓSrₓNiO₄ oObserved by X rays.
Physical Review Letters American Physical Society 118:15 (2017) 156402
Abstract:
We report the first empirical demonstration that resonant inelastic x-ray scattering (RIXS) is sensitive to collective magnetic excitations in S=1 systems by probing the Ni L₃ edge of La₂₋ₓSrₓNiO₄ (x=0, 0.33, 0.45). The magnetic excitation peak is asymmetric, indicating the presence of single and multi-spin-flip excitations. As the hole doping level is increased, the zone boundary magnon energy is suppressed at a much larger rate than that in hole doped cuprates. Based on the analysis of the orbital and charge excitations observed by RIXS, we argue that this difference is related to the orbital character of the doped holes in these two families. This work establishes RIXS as a probe of fundamental magnetic interactions in nickelates opening the way towards studies of heterostructures and ultrafast pump-probe experiments.Spin dynamics in the antiferromagnetic phases of the Dirac metals AMnBi2 (A = Sr, Ca)
Physical Review B American Physical Society 95:13 (2017) 134405