Doping dependence of collective spin and orbital excitations in the Spin-1 quantum antiferromagnet La₂₋ₓSrₓNiO₄ oObserved by X rays.

Physical Review Letters American Physical Society 118:15 (2017) 156402

Authors:

Gilberto Fabbris, Derek Meyers, Lei Xu, Vamshi M Katukuri, Liviu Hozoi, Xuerong Liu, Z-Y Chen, Jun Okamoto, Thorsten Schmitt, Anne-Christine Uldry, Bernhard Delley, Gen D Gu, Dharmalingam Prabhakaran, Andrew Boothroyd, Jeroen van den Brink, DJ Huang, Mark PM Dean

Abstract:

We report the first empirical demonstration that resonant inelastic x-ray scattering (RIXS) is sensitive to collective magnetic excitations in S=1 systems by probing the Ni L₃ edge of La₂₋ₓSrₓNiO₄ (x=0, 0.33, 0.45). The magnetic excitation peak is asymmetric, indicating the presence of single and multi-spin-flip excitations. As the hole doping level is increased, the zone boundary magnon energy is suppressed at a much larger rate than that in hole doped cuprates. Based on the analysis of the orbital and charge excitations observed by RIXS, we argue that this difference is related to the orbital character of the doped holes in these two families. This work establishes RIXS as a probe of fundamental magnetic interactions in nickelates opening the way towards studies of heterostructures and ultrafast pump-probe experiments.

Spin dynamics in the antiferromagnetic phases of the Dirac metals AMnBi2 (A = Sr, Ca)

Physical Review B American Physical Society 95:13 (2017) 134405

Authors:

Marein C Rahn, Andrew J Princep, A Piovano, J Kulda, YF Guo, YG Shi, Andrew Boothroyd

Abstract:

The square Bi layers in AMnBi2 (A= Sr, Ca) host Dirac fermions which coexist with antiferromagnetic order on the Mn sublattice below TN=290 K (Sr) and 265 K (Ca). We have measured the spin-wave dispersion in these materials by triple-axis neutron spectroscopy. The spectra show pronounced spin gaps of 10.2(2)meV (Sr) and 8.3(8)meV (Ca) and extend to a maximum energy transfer of 61-63 meV. The observed spectra can be accurately reproduced by linear spin-wave theory from a Heisenberg effective spin Hamiltonian. Detailed global fits of the full magnon dispersion are used to determine the in-plane and interlayer exchange parameters as well as well as the magnetocrystalline anisotropy constant. To within experimental error we find no evidence that the magnetic dynamics are influenced by the Dirac fermions.

Crystallographic and optical study of PbHfO3 crystals.

Journal of applied crystallography 50:Pt 2 (2017) 378-384

Authors:

S Huband, AM Glazer, K Roleder, A Majchrowski, PA Thomas

Abstract:

The symmetry of the intermediate high-temperature phase of PbHfO3 has been determined unambiguously to be orthorhombic using a combination of high-resolution X-ray diffraction and birefringence imaging microscopy measurements of crystal plates. While lattice parameter measurements as a function of temperature in the intermediate phase are consistent with either orthorhombic or tetragonal symmetry, domain orientations observed in birefringence imaging microscopy measurements utilizing the Metripol system are only consistent with orthorhombic symmetry with the unit cell in the rhombic orientation of the pseudocubic unit cell.

Spindynamics in the antiferromagnetic phases of the Dirac metals $A$MnBi$_2$ ($A=$ Sr, Ca)

(2017)

Authors:

Marein C Rahn, Andrew J Princep, Andrea Piovano, Jiri Kulda, Yanfeng Guo, Youguo Shi, Andrew T Boothroyd

Room Temperature Neutron Crystallography of Drug Resistant HIV-1 Protease Uncovers Limitations of X-ray Structural Analysis at 100 K.

Journal of medicinal chemistry 60:5 (2017) 2018-2025

Authors:

Oksana Gerlits, David A Keen, Matthew P Blakeley, John M Louis, Irene T Weber, Andrey Kovalevsky

Abstract:

HIV-1 protease inhibitors are crucial for treatment of HIV-1/AIDS, but their effectiveness is thwarted by rapid emergence of drug resistance. To better understand binding of clinical inhibitors to resistant HIV-1 protease, we used room-temperature joint X-ray/neutron (XN) crystallography to obtain an atomic-resolution structure of the protease triple mutant (V32I/I47V/V82I) in complex with amprenavir. The XN structure reveals a D+ ion located midway between the inner Oδ1 oxygen atoms of the catalytic aspartic acid residues. Comparison of the current XN structure with our previous XN structure of the wild-type HIV-1 protease-amprenavir complex suggests that the three mutations do not significantly alter the drug-enzyme interactions. This is in contrast to the observations in previous 100 K X-ray structures of these complexes that indicated loss of interactions by the drug with the triple mutant protease. These findings, thus, uncover limitations of structural analysis of drug binding using X-ray structures obtained at 100 K.