Bilayer manganites reveal polarons in the midst of a metallic breakdown

Nature Physics (2011)

Authors:

F Massee, S de Jong, Y Huang, WK Siu, I Santoso, A Mans, AT Boothroyd, D Prabhakaran, R Follath, A Varykhalov, L Patthey, M Shi, JB Goedkoop, MS Golden

Abstract:

The origin of colossal magnetoresistance (CMR) in manganese oxides is among the most challenging problems in condensed-matter physics today. The true nature of the low-temperature electronic phase of these materials is heavily debated. By combining photoemission and tunnelling data, we show that in the archetypal bilayer system La 2-2x Sr 1+2x Mn 2 O 7 , polaronic degrees of freedom win out across the CMR region of the phase diagram. This means that the generic ground state of bilayer manganites supports a vanishing coherent quasi-particle spectral weight at the Fermi level throughout k-space. The incoherence of the charge carriers, resulting from strong electron-lattice interactions and the accompanying orbital physics, offers a unifying explanation for the anomalous charge-carrier dynamics seen in transport, optics and electron spectroscopies. The stacking number N is the key factor for true metallic behaviour, as an intergrowth-driven breakdown of the polaronic domination to give a metal possessing a traditional Fermi surface is seen in this system.

Femtoscale magnetically induced lattice distortions in multiferroic TbMnO₃.

Science 333:6047 (2011) 1273-1276

Authors:

HC Walker, F Fabrizi, L Paolasini, F de Bergevin, J Herrero-Martin, AT Boothroyd, D Prabhakaran, DF McMorrow

Abstract:

Magneto-electric multiferroics exemplified by TbMnO(3) possess both magnetic and ferroelectric long-range order. The magnetic order is mostly understood, whereas the nature of the ferroelectricity has remained more elusive. Competing models proposed to explain the ferroelectricity are associated respectively with charge transfer and ionic displacements. Exploiting the magneto-electric coupling, we used an electric field to produce a single magnetic domain state, and a magnetic field to induce ionic displacements. Under these conditions, interference between charge and magnetic x-ray scattering arose, encoding the amplitude and phase of the displacements. When combined with a theoretical analysis, our data allow us to resolve the ionic displacements at the femtoscale, and show that such displacements make a substantial contribution to the zero-field ferroelectric moment.

Femtoscale magnetically induced lattice distortions in multiferroic TbMnO 3

Science 333:6047 (2011) 1273-1276

Authors:

HC Walker, F Fabrizi, L Paolasini, F De Bergevin, J Herrero-Martin, AT Boothroyd, D Prabhakaran, DF McMorrow

Abstract:

Magneto-electric multiferroics exemplified by TbMnO 3 possess both magnetic and ferroelectric long-range order. The magnetic order is mostly understood, whereas the nature of the ferroelectricity has remained more elusive. Competing models proposed to explain the ferroelectricity are associated respectively with charge transfer and ionic displacements. Exploiting the magneto-electric coupling, we used an electric field to produce a single magnetic domain state, and a magnetic field to induce ionic displacements. Under these conditions, interference between charge and magnetic x-ray scattering arose, encoding the amplitude and phase of the displacements. When combined with a theoretical analysis, our data allow us to resolve the ionic displacements at the femtoscale, and show that such displacements make a substantial contribution to the zero-field ferroelectric moment.

Identification of the Elusive Hydronium Ion Exchanging Roles with a Proton in an Enzyme at Lower pH Values

Angewandte Chemie International Edition Wiley 50:33 (2011) 7520-7523

Authors:

Andrey Y Kovalevsky, BL Hanson, SA Mason, T Yoshida, SZ Fisher, M Mustyakimov, VT Forsyth, MP Blakeley, DA Keen, Paul Langan

Crystal structure determinations of Zr Rich-PbZr1-x Ti x O3

Ferroelectrics 414:1 (2011) 147-154

Authors:

H Yokota, N Zhang, PA Thomas, AM Glazer

Abstract:

TOF experiments were carried out at room temperature and high temperature for Zr rich PbZr1-xTixO3 powders. The best R-factors were obtained with a mixture of R3c and Cm phases. The composition of the Cm phase monotonically increases towards the MPB. At high temperature in the cubic phase, the ADPs for the Pb atom become smaller when Pb displacements along either >110111