Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Stellar_flare_hits_HD_189733_b_(artist's_impression)

This artist's impression shows the hot Jupiter HD 189733b, as it passes in front of its parent star, as the latter is flaring, driving material away from the planet. The escaping atmosphere is seen silhouetted against the starlight. The surface of the star, which is around 80% the mass of the Sun, is based on observations of the Sun from NASA's Solar Dynamics Observatory.

Credit: NASA, ESA, L. Calçada, Solar Dynamics Observatory

Prof Suzanne Aigrain

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Exoplanets and Stellar Physics
Suzanne.Aigrain@physics.ox.ac.uk
Telephone: 01865 (2)73339
Denys Wilkinson Building, room 762
Stars & Planets @ Oxford research group website
  • About
  • Publications

Understanding and Mitigating Biases when Studying Inhomogeneous Emission Spectra with JWST

(2020)

Authors:

Jake Taylor, Vivien Parmentier, Patrick GJ Irwin, Suzanne Aigrain, Elspeth KH Lee, Joshua Krissansen-Totton
More details from the publisher

A robust, template-free approach to precise radial velocity extraction

Monthly Notices of the Royal Astronomical Society Oxford University Press 492:3 (2020) 3960-3983

Authors:

VM Rajpaul, S Aigrain, LA Buchhave

Abstract:

Doppler spectroscopy is a powerful tool for discovering and characterizing exoplanets. For decades, the standard approach to extracting radial velocities (RVs) has been to cross-correlate observed spectra with a weighted template mask. While still widely used, this approach is known to suffer numerous drawbacks, and so in recent years increasing attention has been paid to developing new and improved ways of extracting RVs. In this proof-of-concept paper, we present a simple yet powerful approach to RV extraction. We use Gaussian processes to model and align all pairs of spectra with each other; we combine the pairwise RVs thus obtained to produce accurate differential stellar RVs, without constructing any template. Doing this on a highly localized basis enables a data-driven approach to identifying and mitigating spectral contamination, even without the input of any prior astrophysical knowledge. We show that a crude implementation of this method applied to an inactive standard star yields RVs with comparable precision to and significantly lower rms variation than RVs from industry-standard pipelines. Though amenable to numerous improvements, even in its basic form presented here our method could facilitate the study of smaller planets around a wider variety of stars than has previously been possible.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Erratum: “An 11 Earth-mass, Long-period Sub-Neptune Orbiting a Sun-like Star” (2019, AJ, 158, 165)

The Astronomical Journal American Astronomical Society 159:1 (2020) 34-34

Authors:

Andrew W Mayo, Vinesh M Rajpaul, Lars A Buchhave, Courtney D Dressing, Annelies Mortier, Li Zeng, Charles D Fortenbach, Suzanne Aigrain, Aldo S Bonomo, Andrew Collier Cameron, David Charbonneau, Adrien Coffinet, Rosario Cosentino, Mario Damasso, Xavier Dumusque, AF Martinez Fiorenzano, Raphaëlle D Haywood, David W Latham, Mercedes López-Morales, Luca Malavolta, Giusi Micela, Emilio Molinari, Logan Pearce, Francesco Pepe, David Phillips, Giampaolo Piotto, Ennio Poretti, Ken Rice, Alessandro Sozzetti, Stephane Udry
More details from the publisher
More details

A robust, template-free approach to precise radial velocity extraction

(2019)

Authors:

Vinesh M Rajpaul, Suzanne Aigrain, Lars A Buchhave
More details from the publisher

The K2 Bright Star Survey. I. Methodology and Data Release

Astrophysical Journal Supplement American Astronomical Society 245:1 (2019) 8

Authors:

Benjamin JS Pope, Timothy R White, Will M Farr, Jie Yu, Michael Greklek-McKeon, Daniel Huber, Conny Aerts, Suzanne Aigrain, Timothy R Bedding, Tabetha Boyajian, Orlagh L Creevey, David W Hogg

Abstract:

While the Kepler mission was designed to look at tens of thousands of faint stars (V gsim 12), brighter stars that saturated the detector are important because they can be and have been observed very accurately by other instruments. By analyzing the unsaturated scattered-light "halo" around these stars, we retrieved precise light curves of most of the brightest stars in K2 fields from Campaign 4 onward. The halo method does not depend on the detailed cause and form of systematics, and we show that it is effective at extracting light curves from both normal and saturated stars. The key methodology is to optimize the weights of a linear combination of pixel time series with respect to an objective function. We test a range of such objective functions, finding that lagged Total Variation, a generalization of Total Variation, performs well on both saturated and unsaturated K2 targets. Applying this to the bright stars across the K2 Campaigns reveals stellar variability ubiquitously, including effects of stellar pulsation, rotation, and binarity. We describe our pipeline and present a catalog of the 161 bright stars, with classifications of their variability, asteroseismic parameters for red giants with well-measured solar-like oscillations, and remarks on interesting objects. These light curves are publicly available as a High Level Science Product from the Mikulski Archive for Space Telescopes (footnote 17).
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • Current page 18
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet