Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Stellar_flare_hits_HD_189733_b_(artist's_impression)

This artist's impression shows the hot Jupiter HD 189733b, as it passes in front of its parent star, as the latter is flaring, driving material away from the planet. The escaping atmosphere is seen silhouetted against the starlight. The surface of the star, which is around 80% the mass of the Sun, is based on observations of the Sun from NASA's Solar Dynamics Observatory.

Credit: NASA, ESA, L. Calçada, Solar Dynamics Observatory

Prof Suzanne Aigrain

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Exoplanets and Stellar Physics
Suzanne.Aigrain@physics.ox.ac.uk
Telephone: 01865 (2)73339
Denys Wilkinson Building, room 762
Stars & Planets @ Oxford research group website
  • About
  • Publications

The spectral impact of magnetic activity on disk-integrated HARPS-N solar observations: exploring new activity indicators

(2020)

Authors:

APG Thompson, CA Watson, RD Haywood, JC Costes, E de Mooij, A Collier Cameron, X Dumusque, DF Phillips, SH Saar, A Mortier, TW Milbourne, S Aigrain, HM Cegla, D Charbonneau, R Cosentino, A Ghedina, DW Latham, M López-Morales, G Micela, E Molinari, E Poretti, A Sozzetti, S Thompson, R Walsworth
More details from the publisher

Mon-735: a new low-mass pre-main-sequence eclipsing binary in NGC 2264

Monthly Notices of the Royal Astronomical Society Oxford University Press 495:2 (2020) 1531-1548

Authors:

Edward Gillen, Lynne A Hillenbrand, John Stauffer, Suzanne Aigrain, Luisa Rebull, Ann Marie Cody

Abstract:

We present Mon-735, a detached double-lined eclipsing binary (EB) member of the ∼3 Myr old NGC 2264 star-forming region, detected by Spitzer. We simultaneously model the Spitzer light curves, follow-up Keck/HIRES radial velocities, and the system’s spectral energy distribution to determine self-consistent masses, radii, and effective temperatures for both stars. We find that Mon-735 comprises two pre-main-sequence M dwarfs with component masses of M = 0.2918 ± 0.0099 and 0.2661 ± 0.0095 M⊙, radii of R = 0.762 ± 0.022 and 0.748 ± 0.023 R⊙, and effective temperatures of Teff = 3260 ± 73 and 3213 ± 73 K. The two stars travel on circular orbits around their common centre of mass in P = 1.9751388 ± 0.0000050 d. We compare our results for Mon-735, along with another EB in NGC 2264 (CoRoT 223992193), to the predictions of five stellar evolution models. These suggest that the lower mass EB system Mon-735 is older than CoRoT 223992193 in the mass–radius diagram (MRD) and, to a lesser extent, in the Hertzsprung–Russell diagram (HRD). The MRD ages of Mon-735 and CoRoT 223992193 are ∼7–9 and 4–6 Myr, respectively, with the two components in each EB system possessing consistent ages.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Mon-735: A new low-mass pre-main sequence eclipsing binary in NGC 2264

(2020)

Authors:

Edward Gillen, Lynne A Hillenbrand, John Stauffer, Suzanne Aigrain, Luisa Rebull, Ann Marie Cody
More details from the publisher

Transiting exoplanets from the CoRoT space mission

Astronomy & Astrophysics EDP Sciences 635 (2020) a122

Authors:

P Bordé, RF Díaz, O Creevey, C Damiani, H Deeg, P Klagyivik, G Wuchterl, D Gandolfi, M Fridlund, F Bouchy, S Aigrain, R Alonso, J-M Almenara, A Baglin, SCC Barros, AS Bonomo, J Cabrera, Sz Csizmadia, M Deleuil, A Erikson, S Ferraz-Mello, EW Guenther, T Guillot, S Grziwa, A Hatzes, G Hébrard, T Mazeh, M Ollivier, H Parviainen, M Pätzold, H Rauer, D Rouan, A Santerne, J Schneider
More details from the publisher
More details

Understanding and mitigating biases when studying inhomogeneous emission spectra with JWST

Monthly Notices of the Royal Astronomical Society Royal Astronomical Society 493:3 (2020) 4342-4354,

Authors:

Jake Taylor, Vivien Parmentier, Patrick Irwin, Suzanne Aigrain, Graham Lee, Joshua Krissansen-Totton

Abstract:

Exoplanet emission spectra are often modelled assuming that the hemisphere observed is well represented by a horizontally homogenized atmosphere. However, this approximation will likely fail for planets with a large temperature contrast in the James Webb Space Telescope (JWST) era, potentially leading to erroneous interpretations of spectra. We first develop an analytic formulation to quantify the signal-to-noise ratio and wavelength coverage necessary to disentangle temperature inhomogeneities from a hemispherically averaged spectrum. We find that for a given signal-to-noise ratio, observations at shorter wavelengths are better at detecting the presence of inhomogeneities. We then determine why the presence of an inhomogeneous thermal structure can lead to spurious molecular detections when assuming a fully homogenized planet in the retrieval process. Finally, we quantify more precisely the potential biases by modelling a suite of hot Jupiter spectra, varying the spatial contributions of a hot and a cold region, as would be observed by the different instruments of JWST/NIRSpec. We then retrieve the abundances and temperature profiles from the synthetic observations. We find that in most cases, assuming a homogeneous thermal structure when retrieving the atmospheric chemistry leads to biased results, and spurious molecular detection. Explicitly modelling the data using two profiles avoids these biases, and is statistically supported provided the wavelength coverage is wide enough, and crucially also spanning shorter wavelengths. For the high contrast used here, a single profile with a dilution factor performs as well as the two-profile case, with only one additional parameter compared to the 1D approach.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet