Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Stellar_flare_hits_HD_189733_b_(artist's_impression)

This artist's impression shows the hot Jupiter HD 189733b, as it passes in front of its parent star, as the latter is flaring, driving material away from the planet. The escaping atmosphere is seen silhouetted against the starlight. The surface of the star, which is around 80% the mass of the Sun, is based on observations of the Sun from NASA's Solar Dynamics Observatory.

Credit: NASA, ESA, L. Calçada, Solar Dynamics Observatory

Prof Suzanne Aigrain

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Exoplanets and Stellar Physics
Suzanne.Aigrain@physics.ox.ac.uk
Telephone: 01865 (2)73339
Denys Wilkinson Building, room 762
Stars & Planets @ Oxford research group website
  • About
  • Publications

Planet Hunters TESS II: Findings from the first two years of TESS

Monthly Notices of the Royal Astronomical Society 501:4 (2021) 4669-4690

Authors:

Nl Eisner, O Barragán, C Lintott, S Aigrain, B Nicholson, Ts Boyajian, S Howell, C Johnston, B Lakeland, G Miller, A McMaster, H Parviainen, Ej Safron, Me Schwamb, L Trouille, S Vaughan, N Zicher, C Allen, S Allen, M Bouslog, C Johnson, Mn Simon, Z Wolfenbarger, Eml Baeten, Dm Bundy, T Hoffman

Abstract:

© 2021 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. We present the results from the first two years of the Planet Hunters TESS (PHT) citizen science project, which identifies planet candidates in the TESS (Transiting Exoplanet Survey Satellite) data by engaging members of the general public. Over 22 000 citizen scientists from around the world visually inspected the first 26 sectors of TESS data in order to help identify transit-like signals. We use a clustering algorithm to combine these classifications into a ranked list of events for each sector, the top 500 of which are then visually vetted by the science team. We assess the detection efficiency of this methodology by comparing our results to the list of TESS Objects of Interest (TOIs) and show that we recover 85 per cent of the TOIs with radii greater than 4 R and 51 per cent of those with radii between 3 and 4 R. Additionally, we present our 90 most promising planet candidates that had not previously been identified by other teams, 73 of which exhibit only a single-transit event in the TESS light curve, and outline our efforts to follow these candidates up using ground-based observatories. Finally, we present noteworthy stellar systems that were identified through the Planet Hunters TESS project.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

A self-lensing binary massive black hole interpretation of quasi-periodic eruptions

(2021)

Authors:

Adam Ingram, Sara Motta, Suzanne Aigrain, Aris Karastergiou
More details from the publisher
Details from ArXiV

Planet Hunters TESS II: Findings from the first two years of TESS

(2020)

Authors:

Nora L Eisner, Oscar Barragán, Chris Lintott, Suzanne Aigrain, Belinda Nicholson, Tabetha S Boyajian, Steve B Howell, Cole Johnston, Ben Lakeland, Grant Miller, Adam McMaster, Hannu Parviainen, Emily J Safron, Megan E Schwamb, Laura Trouille, Sophia Vaughan, Norbert Zicher, Campbell Allen, Sarah Allen, Mark Bouslog, Cliff Johnson, Molly N Simon, Zach Wolfenbarger, Elisabeth ML Baeten, David M Bundy, Tony Hoffman
More details from the publisher

III.1 Transit features detected by the CoRoT/Exoplanet Science Team

Chapter in The CoRoT Legacy Book, EDP Sciences (2020) 117-122

Authors:

M Deleuil, C Moutou, J Cabrera, S Aigrain, F Bouchy, H Deeg, P Bordé
More details from the publisher

Separating planetary reflex Doppler shifts from stellar variability in the wavelength domain

(2020)

Authors:

A Collier Cameron, EB Ford, S Shahaf, S Aigrain, X Dumusque, RD Haywood, A Mortier, DF Phillips, L Buchhave, M Cecconi, H Cegla, R Cosentino, M Cretignier, A Ghedina, M Gonzalez, DW Latham, M Lodi, M Lopez-Morales, G Micela, E Molinari, F Pepe, G Piotto, E Poretti, D Queloz, J San Juan, D Segransan, A Sozzetti, A Szentgyorgyi, S Thompson, S Udry, C Watson
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Current page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet