Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Myles Allen CBE FRS

Statutory Professor

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics
Myles.Allen@physics.ox.ac.uk
Telephone: 01865 (2)72085,01865 (2)75895
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

Increased outburst flood hazard from Lake Palcacocha due to human-induced glacier retreat

Nature Geoscience Springer Nature 14:2 (2021) 85-90

Authors:

Rupert Stuart-Smith, Gerard H Roe, Sihan Li, Myles Allen

Abstract:

A potential glacial lake outburst flood from Lake Palcacocha (Cordillera Blanca, Peru) threatens Huaraz, a city of 120,000 people. In 1941, an outburst flood destroyed one-third of the city and caused at least 1,800 fatalities. Since pre-industrial times, Lake Palcacocha has expanded due to the retreat of Palcaraju glacier. Here we used observations and numerical models to evaluate the anthropogenic contribution to the glacier’s retreat and glacial lake outburst flood hazard. We found that the magnitude of human-induced warming equals between 85 and 105% (5–95% confidence interval) of the observed 1 °C warming since 1880 in this region. We conclude that it is virtually certain (>99% probability) that the retreat of Palcaraju glacier to the present day cannot be explained by natural variability alone, and that the retreat by 1941 represented an early impact of anthropogenic greenhouse gas emissions. Our central estimate is that the overall retreat is entirely attributable to the observed temperature trend, and that the resulting change in the geometry of the lake and valley has substantially increased the outburst flood hazard.
More details from the publisher
Details from ORA
More details

Method Uncertainty Is Essential for Reliable Confidence Statements of Precipitation Projections

Journal of Climate American Meteorological Society 34:3 (2021) 1227-1240

Authors:

Peter Uhe, Dann Mitchell, Paul D Bates, Myles R Allen, Richard A Betts, Chris Huntingford, Andrew D King, Benjamin M Sanderson, Hideo Shiogama
More details from the publisher
More details

Progressive supply-side policy under the Paris Agreement to enhance geological carbon storage

Climate Policy Taylor & Francis 21:1 (2021) 63-77

Authors:

Paul D Zakkour, Wolfgang Heidug, Andrew Howard, R Stuart Haszeldine, Myles R Allen, David Hone
More details from the publisher
More details

Europe's 'green deal' and carbon dioxide removal.

Nature 589:7840 (2021) 19

Authors:

David M Reiner, Ilkka Hannula, Tiina Koljonen, Myles Allen, Wolfgang Lucht, Gonzalo Guillén-Gosálbez, Niall Mac Dowell
More details from the publisher
More details

The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018.

Atmospheric environment (Oxford, England : 1994) 244 (2021) 117834

Authors:

DS Lee, DW Fahey, A Skowron, MR Allen, U Burkhardt, Q Chen, SJ Doherty, S Freeman, PM Forster, J Fuglestvedt, A Gettelman, RR De León, LL Lim, MT Lund, RJ Millar, B Owen, JE Penner, G Pitari, MJ Prather, R Sausen, LJ Wilcox

Abstract:

Global aviation operations contribute to anthropogenic climate change via a complex set of processes that lead to a net surface warming. Of importance are aviation emissions of carbon dioxide (CO2), nitrogen oxides (NOx), water vapor, soot and sulfate aerosols, and increased cloudiness due to contrail formation. Aviation grew strongly over the past decades (1960-2018) in terms of activity, with revenue passenger kilometers increasing from 109 to 8269 billion km yr-1, and in terms of climate change impacts, with CO2 emissions increasing by a factor of 6.8 to 1034 Tg CO2 yr-1. Over the period 2013-2018, the growth rates in both terms show a marked increase. Here, we present a new comprehensive and quantitative approach for evaluating aviation climate forcing terms. Both radiative forcing (RF) and effective radiative forcing (ERF) terms and their sums are calculated for the years 2000-2018. Contrail cirrus, consisting of linear contrails and the cirrus cloudiness arising from them, yields the largest positive net (warming) ERF term followed by CO2 and NOx emissions. The formation and emission of sulfate aerosol yields a negative (cooling) term. The mean contrail cirrus ERF/RF ratio of 0.42 indicates that contrail cirrus is less effective in surface warming than other terms. For 2018 the net aviation ERF is +100.9 milliwatts (mW) m-2 (5-95% likelihood range of (55, 145)) with major contributions from contrail cirrus (57.4 mW m-2), CO2 (34.3 mW m-2), and NOx (17.5 mW m-2). Non-CO2 terms sum to yield a net positive (warming) ERF that accounts for more than half (66%) of the aviation net ERF in 2018. Using normalization to aviation fuel use, the contribution of global aviation in 2011 was calculated to be 3.5 (4.0, 3.4) % of the net anthropogenic ERF of 2290 (1130, 3330) mW m-2. Uncertainty distributions (5%, 95%) show that non-CO2 forcing terms contribute about 8 times more than CO2 to the uncertainty in the aviation net ERF in 2018. The best estimates of the ERFs from aviation aerosol-cloud interactions for soot and sulfate remain undetermined. CO2-warming-equivalent emissions based on global warming potentials (GWP* method) indicate that aviation emissions are currently warming the climate at approximately three times the rate of that associated with aviation CO2 emissions alone. CO2 and NOx aviation emissions and cloud effects remain a continued focus of anthropogenic climate change research and policy discussions.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 8
  • Page 9
  • Page 10
  • Page 11
  • Current page 12
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet