Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Myles Allen CBE FRS

Statutory Professor

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics
Myles.Allen@physics.ox.ac.uk
Telephone: 01865 (2)72085,01865 (2)75895
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

Quantifying aviation’s contribution to global warming

Environmental Research Letters IOP Publishing 16:10 (2021) 104027-104027

Authors:

M Klöwer, MR Allen, DS Lee, SR Proud, L Gallagher, A Skowron

Abstract:

Abstract Growth in aviation contributes more to global warming than is generally appreciated because of the mix of climate pollutants it generates. Here, we model the CO2 and non-CO2 effects like nitrogen oxide emissions and contrail formation to analyse aviation’s total warming footprint. Aviation contributed approximately 4% to observed human-induced global warming to date, despite being responsible for only 2.4% of global annual emissions of CO2. Aviation is projected to cause a total of about 0.1 °C of warming by 2050, half of it to date and the other half over the next three decades, should aviation’s pre-COVID growth resume. The industry would then contribute a 6%–17% share to the remaining 0.3 °C–0.8 °C to not exceed 1.5 °C–2 °C of global warming. Under this scenario, the reduction due to COVID-19 to date is small and is projected to only delay aviation’s warming contribution by about five years. But the leveraging impact of growth also represents an opportunity: aviation’s contribution to further warming would be immediately halted by either a sustained annual 2.5% decrease in air traffic under the existing fuel mix, or a transition to a 90% carbon-neutral fuel mix by 2050.
More details from the publisher
More details
More details

Quantifying aviation’s contribution to global warming

Environmental Research Letters IOP Publishing 16:10 (2021) 104027

Authors:

M Klöwer, MR Allen, DS Lee, SR Proud, L Gallagher, A Skowron
More details from the publisher

Operationalizing the net-negative carbon economy

Nature Springer Nature 596 (2021) 377-383

Authors:

Johannes Bednar, Michael Obersteiner, Artem Baklanov, Marcus Thomson, Fabian Wagner, Oliver Geden, Myles Allen, James Hall

Abstract:

The remaining carbon budget for limiting global warming to 1.5 degrees Celsius will probably be exhausted within this decade1,2. Carbon debt3 generated thereafter will need to be compensated by net-negative emissions4. However, economic policy instruments to guarantee potentially very costly net carbon dioxide removal (CDR) have not yet been devised. Here we propose intertemporal instruments to provide the basis for widely applied carbon taxes and emission trading systems to finance a net-negative carbon economy5. We investigate an idealized market approach to incentivize the repayment of previously accrued carbon debt by establishing the responsibility of emitters for the net removal of carbon dioxide through ‘carbon removal obligations’ (CROs). Inherent risks, such as the risk of default by carbon debtors, are addressed by pricing atmospheric CO2 storage through interest on carbon debt. In contrast to the prevailing literature on emission pathways, we find that interest payments for CROs induce substantially more-ambitious near-term decarbonization that is complemented by earlier and less-aggressive deployment of CDR. We conclude that CROs will need to become an integral part of the global climate policy mix if we are to ensure the viability of ambitious climate targets and an equitable distribution of mitigation efforts across generations.
More details from the publisher
Details from ORA
More details
More details

Ensuring that offsets and other internationally transferred mitigation outcomes contribute effectively to limiting global warming

Environmental Research Letters IOP Publishing 16:7 (2021) 74009

Authors:

Myles Allen, Katsumasa Tanaka, Adrian Macey, Michelle Cain, Stuart Jenkins, John Lynch, Matthew Smith

Abstract:

Ensuring the environmental integrity of internationally transferred mitigation outcomes, whether through offset arrangements, a market mechanism or non-market approaches, is a priority for the implementation of Article 6 of the Paris Agreement. Any conventional transferred mitigation outcome, such as an offset agreement, that involves exchanging greenhouse gases with different lifetimes can increase global warming on some timescales. We show that a simple 'do no harm' principle regarding the choice of metrics to use in such transactions can be used to guard against this, noting that it may also be applicable in other contexts such as voluntary and compliance carbon markets. We also show that both approximate and exact 'warming equivalent' exchanges are possible, but present challenges of implementation in any conventional market. Warming-equivalent emissions may, however, be useful in formulating warming budgets in a two-basket approach to mitigation and in reporting contributions to warming in the context of the global stocktake.
More details from the publisher
Details from ORA
More details
More details

Comment on ‘Unintentional unfairness when applying new greenhouse gas emissions metrics at country level’

Environmental Research Letters IOP Publishing 16:6 (2021) 068001

Authors:

Michelle Cain, Keith Shine, David Frame, John Lynch, Adrian Macey, Ray Pierrehumbert, Myles Allen
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet