Improved calculation of warming-equivalent emissions for short-lived climate pollutants
npj Climate and Atmospheric Science Springer Nature 2:2019 (2019) 29
Abstract:
Anthropogenic global warming at a given time is largely determined by the cumulative total emissions (or stock) of long-lived climate pollutants (LLCPs), predominantly carbon dioxide (CO2), and the emission rates (or flow) of short-lived climate pollutants (SLCPs) immediately prior to that time. Under the United Nations Framework Convention on Climate Change (UNFCCC), reporting of greenhouse gas emissions has been standardised in terms of CO2-equivalent (CO2-e) emissions using Global Warming Potentials (GWP) over 100-years, but the conventional usage of GWP does not adequately capture the different behaviours of LLCPs and SLCPs, or their impact on global mean surface temperature. An alternative usage of GWP, denoted GWP*, overcomes this problem by equating an increase in the emission rate of an SLCP with a one-off “pulse” emission of CO2. We show that this approach, while an improvement on the conventional usage, slightly underestimates the impact of recent increases in SLCP emissions on current rates of warming because the climate does not respond instantaneously to radiative forcing. We resolve this with a modification of the GWP* definition, which incorporates a term for each of the short-timescale and long-timescale climate responses to changes in radiative forcing. The amended version allows “CO2-warming-equivalent” (CO2-we) emissions to be calculated directly from reported emissions. Thus SLCPs can be incorporated directly into carbon budgets consistent with long-term temperature goals, because every unit of CO2-we emitted generates approximately the same amount of warming, whether it is emitted as a SLCP or a LLCP. This is not the case for conventionally derived CO2-e.The linear sensitivity of the North Atlantic Oscillation and eddy-driven jet to SSTs
Journal of Climate American Meteorological Society 32:19 (2019) 6491-6511
Abstract:
The North Atlantic Oscillation (NAO) and eddy-driven jet contain a forced component arising from sea surface temperature (SST) variations. Due to large amounts of internal variability, it is not trivial to determine where and to what extent SSTs force the NAO and jet. A linear statistical-dynamic method is employed with a large climate ensemble to compute the sensitivities of the winter and summer NAO and jet speed and latitude to the SSTs. Key regions of sensitivity are identified in the Indian and Pacific basins, and the North Atlantic tripole. Using the sensitivity maps and a long observational SST dataset, skilful reconstructions of the NAO and jet time series are made. The ability to skilfully forecast both the winter and summer NAO using only SST anomalies is also demonstrated. The linear approach used here allows precise attribution of model forecast signals to SSTs in particular regions. Skill comes from the Atlantic and Pacific basins on short lead times, whilst the Indian Ocean SSTs may contribute to the longer term NAO trend. However, despite the region of high sensitivity in the Indian Ocean, SSTs here do not provide significant skill on interannual timescales which highlights the limitations of the imposed SST approach. Given the impact of the NAO and jet on Northern Hemisphere weather and climate, these results provide useful information that could be used for improved attribution and forecasting.Assessing changes in risk of amplified planetary waves in a warming world
Atmospheric Science Letters Wiley 20:8 (2019) e929
Evaluation of a large ensemble regional climate modelling system for extreme weather events analysis over Bangladesh
International Journal of Climatology Wiley 39:6 (2019) 2845-2861
Forced summer stationary waves: the opposing effects of direct radiative forcing and sea surface warming
Climate Dynamics Springer Nature 53:7-8 (2019) 4291-4309