Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Myles Allen CBE FRS

Statutory Professor

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics
Myles.Allen@physics.ox.ac.uk
Telephone: 01865 (2)72085,01865 (2)75895
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

Heatwave attribution based on reliable operational weather forecasts

Nature Communications Springer Nature 15:1 (2024) 4530

Authors:

Nicholas Leach, Christopher D Roberts, Matthias Aengenheyster, Daniel Heathcote, Dann M Mitchell, Vikki Thompson, Timothy Palmer, Antje Weisheimer, Myles R Allen

Abstract:

The 2021 Pacific Northwest heatwave was so extreme as to challenge conventional statistical and climate-model-based approaches to extreme weather attribution. However, state-of-the-art operational weather prediction systems are demonstrably able to simulate the detailed physics of the heatwave. Here, we leverage these systems to show that human influence on the climate made this event at least 8 [2–50] times more likely. At the current rate of global warming, the likelihood of such an event is doubling every 20 [10–50] years. Given the multi-decade lower-bound return-time implied by the length of the historical record, this rate of change in likelihood is highly relevant for decision makers. Further, forecast-based attribution can synthesise the conditional event-specific storyline and unconditional event-class probabilistic approaches to attribution. If developed as a routine service in forecasting centres, it could provide reliable estimates of human influence on extreme weather risk, which is critical to supporting effective adaptation planning.
More details from the publisher
Details from ORA
More details
More details

Heatwave attribution based on reliable operational weather forecasts

Nature Communications Nature Research 15:1 (2024) 4530

Authors:

Nicholas J Leach, Christopher D Roberts, Matthias Aengenheyster, Daniel Heathcote, Dann M Mitchell, Vikki Thompson, Tim Palmer, Antje Weisheimer, Myles R Allen

Abstract:

The 2021 Pacific Northwest heatwave was so extreme as to challenge conventional statistical and climate-model-based approaches to extreme weather attribution. However, state-of-the-art operational weather prediction systems are demonstrably able to simulate the detailed physics of the heatwave. Here, we leverage these systems to show that human influence on the climate made this event at least 8 [2–50] times more likely. At the current rate of global warming, the likelihood of such an event is doubling every 20 [10–50] years. Given the multi-decade lower-bound return-time implied by the length of the historical record, this rate of change in likelihood is highly relevant for decision makers. Further, forecast-based attribution can synthesise the conditional event-specific storyline and unconditional event-class probabilistic approaches to attribution. If developed as a routine service in forecasting centres, it could provide reliable estimates of human influence on extreme weather risk, which is critical to supporting effective adaptation planning.
More details from the publisher

Economics of enhanced methane oxidation relative to carbon dioxide removal

Environmental Research Letters IOP Publishing 19:6 (2024) 064043

Authors:

Conor Hickey, Myles Allen

Abstract:

Mitigating short-term global warming is imperative, and a key strategy involves reducing atmospheric methane (CH4) due to its high radiative forcing and short lifespan. This objective can be achieved through methods such as oxidising methane at its source or implementing enhanced oxidation techniques to reduce atmospheric CH4 concentrations. In this study, we use a range of metrics to analyse both the impact and value of enhanced CH4 oxidation relative to carbon dioxide (CO2) removal on global temperature. We apply these metrics to a select group of model studies of thermal-catalytic, photocatalytic, biological and capture-based oxidation processes under different greenhouse gas (GHG) concentrations. Using a target cost of €220-1000/tCO2 for CO2 removal, our findings indicate that metrics valuing enhanced oxidation techniques based on their contribution to mitigating the long-term level of warming show these techniques are uncompetitive with CO2 removal. However, when using metrics that value enhanced oxidation of CH4 based on its impact on the immediate rate of warming, photocatalytic methods may be competitive with CO2 removal, whereas biofiltration, thermal-catalytic oxidation and capture-based units remain uncompetitive. We conclude that if the policy goal is to target the immediate rate of warming, it may be more valuable to incentivise CO2 removal and enhanced oxidation of methane under separate GHG targets.
More details from the publisher
Details from ORA
More details

What do we need to know to safely store CO2 beneath our shelf seas? Stakeholder workshop report

The Agile Initiative (2024)

Authors:

Millicent Sutton, Anna Rufas Blanco, Joseph Asplet, Malini Kallingal, Jimmy Moneron, Joseph Cartwright, Tom Kettlety, Mike Kendall, Heather Bouman, Rosalind Rickaby, Myles Allen, Steve Smith

Abstract:

This report summarises the content and discussion of an Agile Initiative workshop held at the University of Oxford on March 1st 2024, discussing “what do we need to know to safely store CO2 in our UK continental shelf seas?”
More details from the publisher
Details from ORA

Regulating net zero: from groundswell to ground rules

Nature Climate Change Springer Nature 14:4 (2024) 306-308

Authors:

Thomas Hale, Thom Wetzer, Selam Abebe, Myles Allen, Amir Amel-Zadeh, John Armour, Kaya Axelsson, Benjamin Caldecott, Lucilla Borges Ramos Dias, Samuel Fankhauser, Benjamin Franta, Cameron Hepburn, Kennedy Mbeva, Lavanya Rajamani, Steven Smith, Rupert Stuart-Smith

Abstract:

Following a groundswell of voluntary net-zero targets by companies, regulators are increasingly introducing mandatory rules. If governments can overcome the barriers to rigour, coherence and fairness, such mandatory ‘ground rules’ have the potential to overcome the obstructionism that holds back a just climate transition.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet