Indicators of Global Climate Change 2022: annual update of large-scale indicators of the state of the climate system and human influence
Earth System Science Data Copernicus Publications 15:6 (2023) 2295-2327
Abstract:
<jats:p>Abstract. Intergovernmental Panel on Climate Change (IPCC) assessments are the trusted source of scientific evidence for climate negotiations taking place under the United Nations Framework Convention on Climate Change (UNFCCC), including the first global stocktake under the Paris Agreement that will conclude at COP28 in December 2023. Evidence-based decision-making needs to be informed by up-to-date and timely information on key indicators of the state of the climate system and of the human influence on the global climate system. However, successive IPCC reports are published at intervals of 5–10 years, creating potential for an information gap between report cycles. We follow methods as close as possible to those used in the IPCC Sixth Assessment Report (AR6) Working Group One (WGI) report. We compile monitoring datasets to produce estimates for key climate indicators related to forcing of the climate system: emissions of greenhouse gases and short-lived climate forcers, greenhouse gas concentrations, radiative forcing, surface temperature changes, the Earth's energy imbalance, warming attributed to human activities, the remaining carbon budget, and estimates of global temperature extremes. The purpose of this effort, grounded in an open data, open science approach, is to make annually updated reliable global climate indicators available in the public domain (https://doi.org/10.5281/zenodo.8000192, Smith et al., 2023a). As they are traceable to IPCC report methods, they can be trusted by all parties involved in UNFCCC negotiations and help convey wider understanding of the latest knowledge of the climate system and its direction of travel. The indicators show that human-induced warming reached 1.14 [0.9 to 1.4] ∘C averaged over the 2013–2022 decade and 1.26 [1.0 to 1.6] ∘C in 2022. Over the 2013–2022 period, human-induced warming has been increasing at an unprecedented rate of over 0.2 ∘C per decade. This high rate of warming is caused by a combination of greenhouse gas emissions being at an all-time high of 54 ± 5.3 GtCO2e over the last decade, as well as reductions in the strength of aerosol cooling. Despite this, there is evidence that increases in greenhouse gas emissions have slowed, and depending on societal choices, a continued series of these annual updates over the critical 2020s decade could track a change of direction for human influence on climate. </jats:p>Large-ensemble forecast-based extreme event attribution
Copernicus Publications (2023)
A review of commercialisation mechanisms for carbon dioxide removal
Frontiers in Climate Frontiers Media 4 (2023) 1101525
Abstract:
The deployment of carbon dioxide removal (CDR) needs to be scaled up to achieve net zero emission pledges. In this paper we survey the policy mechanisms currently in place globally to incentivise CDR, together with an estimate of what different mechanisms are paying per tonne of CDR, and how those costs are currently distributed. Incentive structures are grouped into three structures, market-based, public procurement, and fiscal mechanisms. We find the majority of mechanisms currently in operation are underresourced and pay too little to enable a portfolio of CDR that could support achievement of net zero. The majority of mechanisms are concentrated in market-based and fiscal structures, specifically carbon markets and subsidies. While not primarily motivated by CDR, mechanisms tend to support established afforestation and soil carbon sequestration methods. Mechanisms for geological CDR remain largely underdeveloped relative to the requirements of modelled net zero scenarios. Commercialisation pathways for CDR require suitable policies and markets throughout the projects development cycle. Discussion and investment in CDR has tended to focus on technology development. Our findings suggest that an equal or greater emphasis on policy innovation may be required if future requirements for CDR are to be met. This study can further support research and policy on the identification of incentive gaps and realistic potential for CDR globally.Extended producer responsibility for fossil fuels*
Environmental Research Letters IOP Publishing 18:1 (2023) 011005
Abstract:
Energy policy faces a triple challenge: increasing resilience and guaranteeing the security of supply of both fossil and non-fossil energy, minimising the impact on consumer energy prices, and retaining consistency with Paris Agreement climate goals. High prices and producer rents, however, also present an opportunity: to open a conversation about applying the principle of extended producer responsibility (EPR) to fossil fuels. We demonstrate that this could deconflict energy security and climate policy at an affordable cost by stopping fossil fuels from causing further global warming. Implementing EPR through a combination of geological CO2 storage and nature-based solutions can deliver net zero at comparable or lower costs than conventional scenarios driven with a global carbon price and subject to constraints on CO2 storage deployment. It would also mean that the principal beneficiary of high fossil fuel prices, the fossil fuel industry itself, plays its part in addressing the climate challenge while reducing the risk of asset stranding.Tonga eruption increases chance of temporary surface temperature anomaly above 1.5 °C
Nature Climate Change Springer Nature 13 (2023) 127-129