Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Myles Allen CBE FRS

Statutory Professor

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics
Myles.Allen@physics.ox.ac.uk
Telephone: 01865 (2)72085,01865 (2)75895
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

Climate change, climate justice and the application of probabilistic event attribution to summer heat extremes in the California Central Valley

Climatic Change Springer Nature 133:3 (2015) 427-438

Authors:

Roberto Mera, Neil Massey, David E Rupp, Philip Mote, Myles Allen, Peter C Frumhoff
More details from the publisher
More details

A novel bias correction methodology for climate impact simulations

Earth System Dynamics Discussions European Geosciences Union 6:2 (2015) 1999-2042

Authors:

S Sippel, Friederike Otto, M Forkel, Myles R Allen, Benoit P Guillod, M Heimann, M Reichstein, SI Seneviratne, K Thonicke, M Mahecha

Abstract:

Understanding, quantifying and attributing the impacts of extreme weather and climate events in the terrestrial biosphere is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. In this study, we introduce a novel, resampling-based bias correction scheme that fully preserves the physical consistency and multivariate correlation structure of the model output. This procedure strongly improves the representation of climatic extremes and variability in a large regional climate model ensemble (HadRM3P, climateprediction.net/weatherathome), which is illustrated for summer extremes in temperature and rainfall over Central Europe. Moreover, we simulate biosphere–atmosphere fluxes of carbon and water using a terrestrial ecosystem model (LPJmL) driven by the bias corrected climate forcing. The resampling-based bias correction yields strongly improved statistical distributions of carbon and water fluxes, including the extremes. Our results thus highlight the importance to carefully consider statistical moments beyond the mean for climate impact simulations. In conclusion, the present study introduces an approach to alleviate climate model biases in a physically consistent way and demonstrates that this yields strongly improved simulations of climate extremes and associated impacts in the terrestrial biosphere. A wider uptake of our methodology by the climate and impact modelling community therefore seems desirable for accurately quantifying past, current and future extremes.
More details from the publisher
Details from ORA

Attribution of extreme weather events in Africa: a preliminary exploration of the science and policy implications

CLIMATIC CHANGE 132:4 (2015) 531-543

Authors:

Friederike Otto, E Boyd, RG Jones, RJ Cornforth, R James, HR Parker, Allen

Abstract:

© 2015 The Author(s) Extreme weather events are a significant cause of loss of life and livelihoods, particularly in vulnerable countries and communities in Africa. Such events or their probability of occurring may be, or are, changing due to climate change with consequent changes in the associated risks. To adapt to, or to address loss and damage from, this changing risk we need to understand the effects of climate change on extreme weather events and their impacts. The emerging science of probabilistic event attribution can provide scientific evidence about the contribution of anthropogenic climate change to changes in risk of extreme events. This research has the potential to be useful for climate change adaptation, but there is a need to explore its application in vulnerable developing countries, particularly those in Africa, since the majority of existing event attribution studies have focused on mid-latitude events. Here we explain the methods of, and implications of, different approaches to attributing extreme weather events in an African context. The analysis demonstrates that different ways of framing attribution questions can lead to very different assessments of change in risk. Crucially, defining the most appropriate attribution question to ask is not a science decision but one that needs to be made in dialogue with those stakeholders who will use the answers. This is true of all attribution studies but may be particularly relevant in a tropical context, suggesting that collaboration between scientists and policy-makers is a priority for Africa.
More details from the publisher
Details from ORA
More details

Evaluation of a Regional Climate Modeling Effort for the Western United States Using a Superensemble from Weather@home*

Journal of Climate American Meteorological Society 28:19 (2015) 7470-7488

Authors:

Sihan Li, Philip W Mote, David E Rupp, Dean Vickers, Roberto Mera, Myles Allen
More details from the publisher
More details

Towards a typology for constrained climate model forecasts

Climatic Change 132:1 (2015) 15-29

Authors:

A Lopez, EB Suckling, FEL Otto, A Lorenz, D Rowlands, MR Allen

Abstract:

In recent years several methodologies have been developed to combine and interpret ensembles of climate models with the aim of quantifying uncertainties in climate projections. Constrained climate model forecasts have been generated by combining various choices of metrics used to weight individual ensemble members, with diverse approaches to sampling the ensemble. The forecasts obtained are often significantly different, even when based on the same model output. Therefore, a climate model forecast classification system can serve two roles: to provide a way for forecast producers to self-classify their forecasts; and to provide information on the methodological assumptions underlying the forecast generation and its uncertainty when forecasts are used for impacts studies. In this review we propose a possible classification system based on choices of metrics and sampling strategies. We illustrate the impact of some of the possible choices in the uncertainty quantification of large scale projections of temperature and precipitation changes, and briefly discuss possible connections between climate forecast uncertainty quantification and decision making approaches in the climate change context.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 23
  • Page 24
  • Page 25
  • Page 26
  • Current page 27
  • Page 28
  • Page 29
  • Page 30
  • Page 31
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet