Using a game to engage stakeholders in extreme event attribution science
International Journal of Disaster Risk Science Springer 7:4 (2016) 353-365
Abstract:
The impacts of weather and climate-related disasters are increasing, and climate change can exacerbate many disasters. Effectively communicating climate risk and integrating science into policy requires scientists and stakeholders to work together. But dialogue between scientists and policymakers can be challenging given the inherently multidimensional nature of the issues at stake when managing climate risks. Building on the growing use of serious games to create dialogue between stakeholders, we present a new game for policymakers called Climate Attribution Under Loss and Damage: Risking, Observing, Negotiating (CAULDRON). CAULDRON aims to communicate understanding of the science attributing extreme events to climate change in a memorable and compelling way, and create space for dialogue around policy decisions addressing changing risks and loss and damage from climate change. We describe the process of developing CAULDRON, and draw on observations of players and their feedback to demonstrate its potential to facilitate the interpretation of probabilistic climate information and the understanding of its relevance to informing policy. Scientists looking to engage with stakeholders can learn valuable lessons in adopting similar innovative approaches. The suitability of games depends on the policy context but, if used appropriately, experiential learning can drive coproduced understanding and meaningful dialogue.Corrigendum
Journal of Climate American Meteorological Society 29:21 (2016) 7939-7940
weather@home 2: validation of an improved global-regional climate modelling system
Geoscientific Model Development Discussions (2016)
Perspectives on the causes of exceptionally low 2015 snowpack in the western United States
Geophysical Research Letters Wiley (2016)
Abstract:
Augmenting previous papers about the exceptional 2011-15 California drought, we offer new perspectives on the ‘snow drought’ that extended into Oregon in 2014 and Washington in 2015. Over 80% of measurement sites west of 115°W experienced record low snowpack in 2015, and we estimate a return period of 400-1000 years for California’s snowpack under the questionable assumption of stationarity. Hydrologic modeling supports the conclusion that 2015 was the most severe on record by a wide margin. Using a crowd-sourced superensemble of regional climate model simulations, we show that both human influence and sea surface temperature anomalies contributed strongly to the risk of snow drought in Oregon and Washington: the contribution of SST anomalies was about twice that of human influence. By contrast, SSTs and humans appear to have played a smaller role in creating California’s snow drought. In all three states, the anthropogenic effect on temperature exacerbated the snow drought.The weather@home regional climate modelling project for Australia and New Zealand
Geoscientific Model Development European Geosciences Union 9:9 (2016) 3161-3176