Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Professor Myles Allen CBE FRS

Statutory Professor

Research theme

  • Climate physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics
Myles.Allen@physics.ox.ac.uk
Telephone: 01865 (2)72085,01865 (2)75895
Atmospheric Physics Clarendon Laboratory, room 109
  • About
  • Publications

Using a game to engage stakeholders in extreme event attribution science

International Journal of Disaster Risk Science Springer 7:4 (2016) 353-365

Authors:

Hannah R Parker, Rosalind J Cornforth, Pablo Suarez, Myles R Allen, Emily Boyd, Rachel James, Richard G Jones, Friederike EL Otto, Peter Walton

Abstract:

The impacts of weather and climate-related disasters are increasing, and climate change can exacerbate many disasters. Effectively communicating climate risk and integrating science into policy requires scientists and stakeholders to work together. But dialogue between scientists and policymakers can be challenging given the inherently multidimensional nature of the issues at stake when managing climate risks. Building on the growing use of serious games to create dialogue between stakeholders, we present a new game for policymakers called Climate Attribution Under Loss and Damage: Risking, Observing, Negotiating (CAULDRON). CAULDRON aims to communicate understanding of the science attributing extreme events to climate change in a memorable and compelling way, and create space for dialogue around policy decisions addressing changing risks and loss and damage from climate change. We describe the process of developing CAULDRON, and draw on observations of players and their feedback to demonstrate its potential to facilitate the interpretation of probabilistic climate information and the understanding of its relevance to informing policy. Scientists looking to engage with stakeholders can learn valuable lessons in adopting similar innovative approaches. The suitability of games depends on the policy context but, if used appropriately, experiential learning can drive coproduced understanding and meaningful dialogue.
More details from the publisher
Details from ORA
More details
More details

Corrigendum

Journal of Climate American Meteorological Society 29:21 (2016) 7939-7940

Authors:

Sihan Li, Philip W Mote, David E Rupp, Dean Vickers, Roberto Mera, Myles Allen
More details from the publisher
More details

weather@home 2: validation of an improved global-regional climate modelling system

Geoscientific Model Development Discussions (2016)

Authors:

Benoit Guillod, A Bowery, K Haustein, RG Jones, NR Massey, DM Mitchell, FEL Otto, SARAH Sparrow, P Uhe, DAVID Wallom, S Wilson
More details from the publisher

Perspectives on the causes of exceptionally low 2015 snowpack in the western United States

Geophysical Research Letters Wiley (2016)

Authors:

Philip W Mote, David E Rupp, Sihan Li, Darrin J Sharp, Friederike EL Otto, Peter Uhe, Mu Xiao, Dennis P Lettenmaier, Heidi Cullen, Myles R Allen

Abstract:

Augmenting previous papers about the exceptional 2011-15 California drought, we offer new perspectives on the ‘snow drought’ that extended into Oregon in 2014 and Washington in 2015. Over 80% of measurement sites west of 115°W experienced record low snowpack in 2015, and we estimate a return period of 400-1000 years for California’s snowpack under the questionable assumption of stationarity. Hydrologic modeling supports the conclusion that 2015 was the most severe on record by a wide margin. Using a crowd-sourced superensemble of regional climate model simulations, we show that both human influence and sea surface temperature anomalies contributed strongly to the risk of snow drought in Oregon and Washington: the contribution of SST anomalies was about twice that of human influence. By contrast, SSTs and humans appear to have played a smaller role in creating California’s snow drought. In all three states, the anthropogenic effect on temperature exacerbated the snow drought.
More details from the publisher
Details from ORA
More details

The weather@home regional climate modelling project for Australia and New Zealand

Geoscientific Model Development European Geosciences Union 9:9 (2016) 3161-3176

Authors:

Mitchell T Black, David J Karoly, Suzanne M Rosier, Sam M Dean, Andrew D King, Neil R Massey, Sarah Sparrow, Andy Bowery, David Wallom, Richard G Jones, Friederike EL Otto, Myles R Allen

Abstract:

A new climate modelling project has been developed for regional climate simulation and the attribution of weather and climate extremes over Australia and New Zealand. The project, known as weather@home Australia-New Zealand, uses public volunteers' home computers to run a moderate-resolution global atmospheric model with a nested regional model over the Australasian region. By harnessing the aggregated computing power of home computers, weather@home is able to generate an unprecedented number of simulations of possible weather under various climate scenarios. This combination of large ensemble sizes with high spatial resolution allows extreme events to be examined with well-constrained estimates of sampling uncertainty. This paper provides an overview of the weather@home Australia-New Zealand project, including initial evaluation of the regional model performance. The model is seen to be capable of resolving many climate features that are important for the Australian and New Zealand regions, including the influence of El Niño-Southern Oscillation on driving natural climate variability. To date, 75 model simulations of the historical climate have been successfully integrated over the period 1985-2014 in a time-slice manner. In addition, multi-thousand member ensembles have also been generated for the years 2013, 2014 and 2015 under climate scenarios with and without the effect of human influences. All data generated by the project are freely available to the broader research community.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • Current page 23
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet