Human influence on climate in the 2014 southern England winter floods and their impacts
Nature Climate Change Nature Publishing Group 6 (2016) 627-634
Abstract:
A succession of storms reaching southern England in the winter of 2013/2014 caused severe floods and £451 million insured losses. In a large ensemble of climate model simulations, we find that, as well as increasing the amount of moisture the atmosphere can hold, anthropogenic warming caused a small but significant increase in the number of January days with westerly flow, both of which increased extreme precipitation. Hydrological modelling indicates this increased extreme 30-day-average Thames river flows, and slightly increased daily peak flows, consistent with the understanding of the catchment’s sensitivity to longer-duration precipitation and changes in the role of snowmelt. Consequently, flood risk mapping shows a small increase in properties in the Thames catchment potentially at risk of riverine flooding, with a substantial range of uncertainty, demonstrating the importance of explicit modelling of impacts and relatively subtle changes in weather-related risks when quantifying present-day effects of human influence on climate.Superensemble Regional Climate Modeling for the Western United States
Bulletin of the American Meteorological Society American Meteorological Society 97:2 (2016) 203-215
Predicting future uncertainty constraints on global warming projections
Scientific Reports Springer Nature 6:1 (2016) 18903
A novel bias correction methodology for climate impact simulations
Earth System Dynamics European Geosciences Union 7:1 (2016) 71-88
Abstract:
Understanding, quantifying and attributing the impacts of extreme weather and climate events in the terrestrial biosphere is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit biases in their output that hinder any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies, most of which have been criticized for physical inconsistency and the nonpreservation of the multivariate correlation structure. In this study, we introduce a novel, resampling-based bias correction scheme that fully preserves the physical consistency and multivariate correlation structure of the model output. This procedure strongly improves the representation of climatic extremes and variability in a large regional climate model ensemble (HadRM3P, climateprediction.net/weatherathome), which is illustrated for summer extremes in temperature and rainfall over Central Europe. Moreover, we simulate biosphere–atmosphere fluxes of carbon and water using a terrestrial ecosystem model (LPJmL) driven by the bias-corrected climate forcing. The resampling-based bias correction yields strongly improved statistical distributions of carbon and water fluxes, including the extremes. Our results thus highlight the importance of carefully considering statistical moments beyond the mean for climate impact simulations. In conclusion, the present study introduces an approach to alleviate climate model biases in a physically consistent way and demonstrates that this yields strongly improved simulations of climate extremes and associated impacts in the terrestrial biosphere. A wider uptake of our methodology by the climate and impact modelling community therefore seems desirable for accurately quantifying changes in past, current and future extremes.Comparison of methods: Attributing the 2014 record European temperatures to human influences
Geophysical Research Letters American Geophysical Union 43:16 (2016) 8685-8693