A space mission to map the entire observable universe using the CMB as a backlight: Voyage 2050 science white paper
Experimental Astronomy (2021)
Abstract:
This Science White Paper, prepared in response to the ESA Voyage 2050 call for long-term mission planning, aims to describe the various science possibilities that can be realized with an L-class space observatory that is dedicated to the study of the interactions of cosmic microwave background (CMB) photons with the cosmic web. Our aim is specifically to use the CMB as a backlight – and survey the gas, total mass, and stellar content of the entire observable Universe by means of analyzing the spatial and spectral distortions imprinted on it. These distortions result from two major processes that impact on CMB photons: scattering by free electrons and atoms (Sunyaev-Zeldovich effect in diverse forms, Rayleigh scattering, resonant scattering) and deflection by gravitational potential (lensing effect). Even though the list of topics collected in this White Paper is not exhaustive, it helps to illustrate the exceptional diversity of major scientific questions that can be addressed by a space mission that will reach an angular resolution of 1.5 arcmin (goal 1 arcmin), have an average sensitivity better than 1 μK-arcmin, and span the microwave frequency range from roughly 50 GHz to 1 THz. The current paper also highlights the synergy of our Backlight mission concept with several upcoming and proposed ground-based CMB experiments.Linear anisotropies in dispersion-measure-based cosmological observables
(2021)
Cosmic shear power spectra in practice
Journal of Cosmology and Astroparticle Physics IOP Publishing 2021:3 (2021) 067
Abstract:
Cosmic shear is one of the most powerful probes of Dark Energy, targeted by several current and future galaxy surveys. Lensing shear, however, is only sampled at the positions of galaxies with measured shapes in the catalog, making its associated sky window function one of the most complicated amongst all projected cosmological probes of inhomogeneities, as well as giving rise to inhomogeneous noise. Partly for this reason, cosmic shear analyses have been mostly carried out in real-space, making use of correlation functions, as opposed to Fourier-space power spectra. Since the use of power spectra can yield complementary information and has numerical advantages over real-space pipelines, it is important to develop a complete formalism describing the standard unbiased power spectrum estimators as well as their associated uncertainties. Building on previous work, this paper contains a study of the main complications associated with estimating and interpreting shear power spectra, and presents fast and accurate methods to estimate two key quantities needed for their practical usage: the noise bias and the Gaussian covariance matrix, fully accounting for survey geometry, with some of these results also applicable to other cosmological probes. We demonstrate the performance of these methods by applying them to the latest public data releases of the Hyper Suprime-Cam and the Dark Energy Survey collaborations, quantifying the presence of systematics in our measurements and the validity of the covariance matrix estimate. We make the resulting power spectra, covariance matrices, null tests and all associated data necessary for a full cosmological analysis publicly available.Hefty enhancement of cosmological constraints from the DES Y1 data using a Hybrid Effective Field Theory approach to galaxy bias
(2021)
Combining information from multiple cosmological surveys: inference and modeling challenges
(2021)