Microwave spectro-polarimetry of matter and radiation across space and time
Experimental Astronomy Springer Nature 51:3 (2021) 1471-1514
Abstract:
This paper discusses the science case for a sensitive spectro-polarimetric survey of the microwave sky. Such a survey would provide a tomographic and dynamic census of the three-dimensional distribution of hot gas, velocity flows, early metals, dust, and mass distribution in the entire Hubble volume, exploit CMB temperature and polarisation anisotropies down to fundamental limits, and track energy injection and absorption into the radiation background across cosmic times by measuring spectral distortions of the CMB blackbody emission. In addition to its exceptional capability for cosmology and fundamental physics, such a survey would provide an unprecedented view of microwave emissions at sub-arcminute to few-arcminute angular resolution in hundreds of frequency channels, a data set that would be of immense legacy value for many branches of astrophysics. We propose that this survey be carried out with a large space mission featuring a broad-band polarised imager and a moderate resolution spectro-imager at the focus of a 3.5 m aperture telescope actively cooled to about 8K, complemented with absolutely-calibrated Fourier Transform Spectrometer modules observing at degree-scale angular resolution in the 10–2000 GHz frequency range. We propose two observing modes: a survey mode to map the entire sky as well as a few selected wide fields, and an observatory mode for deeper observations of regions of specific interest.Linear anisotropies in dispersion-measure-based cosmological observables
Physical Review D - Particles, Fields, Gravitation and Cosmology American Physical Society 103 (2021) 123544
Abstract:
We derive all contributions to the dispersion measure (DM) of electromagnetic pulses to linear order in cosmological perturbations, including both density fluctuations and relativistic effects. We then use this result to calculate the power spectrum of DM-based cosmological observables to linear order in perturbations. In particular we study two cases: maps of the dispersion measure from a set of localized sources (including the effects of source clustering), and fluctuations in the density of DM-selected sources. The impact of most relativistic effects is limited to large angular scales, and is negligible for all practical applications in the context of ongoing and envisaged observational programmes targetting fast radio bursts. We compare the leading contributions to DM-space clustering, including the effects of gravitational lensing, and find that the signal is dominated by the fluctuations in the free electron column density, rather than the local source clustering or lensing contributions. To compensate for the disappointing irrelevance of relativistic effects, we re-derive them in terms of the geodesic equation for massive particles in a perturbed Friedmann-Robertson-Walker metric.Strong detection of the CMB lensing and galaxy weak lensing cross-correlation from ACT-DR4, Planck Legacy, and KiDS-1000
Astronomy & Astrophysics EDP Sciences 649 (2021) A146-A146
Abstract:
<jats:p>We measured the cross-correlation between galaxy weak lensing data from the Kilo Degree Survey (KiDS-1000, DR4) and cosmic microwave background (CMB) lensing data from the Atacama Cosmology Telescope (ACT, DR4) and the <jats:italic>Planck</jats:italic> Legacy survey. We used two samples of source galaxies, selected with photometric redshifts, (0.1 < <jats:italic>z</jats:italic><jats:sub>B</jats:sub> < 1.2) and (1.2 < <jats:italic>z</jats:italic><jats:sub>B</jats:sub> < 2), which produce a combined detection significance of the CMB lensing and weak galaxy lensing cross-spectrum of 7.7<jats:italic>σ</jats:italic>. With the lower redshift galaxy sample, for which the cross-correlation was detected at a significance of 5.3<jats:italic>σ</jats:italic>, we present joint cosmological constraints on the matter density parameter, Ω<jats:sub>m</jats:sub>, and the matter fluctuation amplitude parameter, <jats:italic>σ</jats:italic><jats:sub>8</jats:sub>, marginalising over three nuisance parameters that model our uncertainty in the redshift and shear calibration as well as the intrinsic alignment of galaxies. We find our measurement to be consistent with the best-fitting flat ΛCDM cosmological models from both <jats:italic>Planck</jats:italic> and KiDS-1000. We demonstrate the capacity of CMB weak lensing cross-correlations to set constraints on either the redshift or shear calibration by analysing a previously unused high-redshift KiDS galaxy sample (1.2 < <jats:italic>z</jats:italic><jats:sub>B</jats:sub> < 2), with the cross-correlation detected at a significance of 7<jats:italic>σ</jats:italic>. This analysis provides an independent assessment for the accuracy of redshift measurements in a regime that is challenging to calibrate directly owing to known incompleteness in spectroscopic surveys.</jats:p>The growth of density perturbations in the last $\sim$10 billion years from tomographic large-scale structure data
(2021)
Probing galaxy bias and intergalactic gas pressure with KiDS Galaxies-tSZ-CMB lensing cross-correlations
Astronomy & Astrophysics EDP Sciences (2021)