Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. David Alonso

Associate Professor of Cosmology

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
  • Rubin-LSST
David.Alonso@physics.ox.ac.uk
Telephone: 01865 (2)288582
Denys Wilkinson Building, room 532B
  • About
  • Publications

Cosmic shear power spectra in practice

(2020)

Authors:

Andrina Nicola, Carlos García-García, David Alonso, Jo Dunkley, Pedro G Ferreira, Anže Slosar, David N Spergel
More details from the publisher

The LSST DESC DC2 Simulated Sky Survey

(2020)

Authors:

LSST Dark Energy Science Collaboration, Bela Abolfathi, David Alonso, Robert Armstrong, Éric Aubourg, Humna Awan, Yadu N Babuji, Franz Erik Bauer, Rachel Bean, George Beckett, Rahul Biswas, Joanne R Bogart, Dominique Boutigny, Kyle Chard, James Chiang, Chuck F Claver, Johann Cohen-Tanugi, Céline Combet, Andrew J Connolly, Scott F Daniel, Seth W Digel, Alex Drlica-Wagner, Richard Dubois, Emmanuel Gangler, Eric Gawiser, Thomas Glanzman, Phillipe Gris, Salman Habib, Andrew P Hearin, Katrin Heitmann, Fabio Hernandez, Renée Hložek, Joseph Hollowed, Mustapha Ishak, Željko Ivezić, Mike Jarvis, Saurabh W Jha, Steven M Kahn, J Bryce Kalmbach, Heather M Kelly, Eve Kovacs, Danila Korytov, K Simon Krughoff, Craig S Lage, François Lanusse, Patricia Larsen, Laurent Le Guillou, Nan Li, Emily Phillips Longley, Robert H Lupton, Rachel Mandelbaum, Yao-Yuan Mao, Phil Marshall, Joshua E Meyers, Marc Moniez, Christopher B Morrison, Andrei Nomerotski, Paul O'Connor, HyeYun Park, Ji Won Park, Julien Peloton, Daniel Perrefort, James Perry, Stéphane Plaszczynski, Adrian Pope, Andrew Rasmussen, Kevin Reil, Aaron J Roodman, Eli S Rykoff, F Javier Sánchez, Samuel J Schmidt, Daniel Scolnic, Christopher W Stubbs, J Anthony Tyson, Thomas D Uram, Antonia Villarreal, Christopher W Walter, Matthew P Wiesner, W Michael Wood-Vasey, Joe Zuntz
More details from the publisher

Tomographic measurement of the intergalactic gas pressure through galaxy-tSZ cross-correlations (vol 491, pg 5464, 2020)

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY Oxford University Press (OUP) 499:1 (2020) 520-522

Authors:

Nick Koukoufilippas, David Alonso, Maciej Bilicki, John A Peacock

Abstract:

© 2020 Oxford University Press. All rights reserved. The paper 'Tomographic measurement of the intergalactic gas pressure through galaxy-tSZ cross-correlations' was published inMNRAS, 491, 5464-5480 (2020). After publication a typographical error in our analysis pipeline code was discovered, which slightly affected some of our results. In particular, our implementation of the generalised NFW profile (GNFW) described in Arnaud et al. (2010) lacked a factor of 1 - bH in the calculation of R500. We have corrected this error, re-run our analysis and present our updated results and comments (where applicable) in this manuscript. (i) Table 3 is updated with new best-fitting values. (ii) Likewise, Figs 8 and 9 are also updated with the new values of the best-fitting 1 - bHand<bPe>. (iii) Finally, our combined constraint on bH following this procedure (equation 48) is 1 - bH= 0.75 ± 0.03. While the main conclusions remain unchanged, it is worth pointing out that the best-fitting mass bias value 1 - bH= 0.75 ± 0.03 is now at a ~3-4s tension with the results measured by Planck Collaboration et al. (2016a) (1 - bH= 0.58 ± 0.04), combining tSZ cluster number counts and the TT CMB power spectrum. Consequently, our results can no longer be viewed as evidence of compatibility between the best-fit cosmology and the clustering properties of galaxies in the datasets used. Further, the best-fitting value of the mass bias is no longer at odds with the one derived from hydrodynamical simulations (Biffi et al. 2016), the estimate from CMB lensing mass calibration (Zubeldia & Challinor 2019), and other direct calibration efforts (e.g. Smith et al. 2016; Eckert et al. 2019), which seem to prefer smaller missing mass fractions (1 - bH~ 0.8). Lastly, our results are in agreement with Chiang et al. (2020), who explore the cosmic thermal history using SZ tomography.
More details from the publisher
More details
More details

Cross-correlating radio continuum surveys and CMB lensing: constraining redshift distributions, galaxy bias and cosmology

(2020)

Authors:

David Alonso, Emilio Bellini, Catherine Hale, Matt J Jarvis, Dominik J Schwarz
More details from the publisher

The cross correlation of the ABS and ACT maps

JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS 2020:9 (2020) 10

Authors:

Zack Li, Sigurd Naess, Simone Aiola, David Alonso, John W Appel, J Richard Bond, Erminia Calabrese, Steve K Choi, Kevin T Crowley, Thomas Essinger-Hileman, Shannon M Duff, Joanna Dunkley, Jw Fowler, Patricio Gallardo, Shuay-Pwu Patty Ho, Johannes Hubmayr, Akito Kusaka, Thibaut Louis, Mathew S Madhavacheril, Jeffrey McMahon, Federico Nati, Michael D Niemack, Lyman Page, Bruce Partridge, Jonathan L Sievers

Abstract:

© 2020 IOP Publishing Ltd and Sissa Medialab. One of the most important checks for systematic errors in CMB studies is the cross correlation of maps made by independent experiments. In this paper we report on the cross correlation between maps from the Atacama B-mode Search (ABS) and Atacama Cosmology Telescope (ACT) experiments in both temperature and polarization. These completely different measurements have a clear correlation with each other and with the Planck satellite in both the EE and TE spectra at ℓ<400 over the roughly 0110 deg2 common to all three. The TB, EB, and BB cross spectra are consistent with noise. Exploiting such cross-correlations will be important for future experiments operating in Chile that aim to probe the 30<ℓ<8,000 range.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 22
  • Page 23
  • Page 24
  • Page 25
  • Current page 26
  • Page 27
  • Page 28
  • Page 29
  • Page 30
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet