Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Arzhang's natural habitat

Prof Arzhang Ardavan

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum spin dynamics
arzhang.ardavan@physics.ox.ac.uk
Telephone: 01865 (2)72366
Clarendon Laboratory, room 267
Personal website
  • About
  • Publications

High-field immiscibility of electrons belonging to adjacent twinned bismuth crystals

npj Quantum Materials Springer Nature 9:1 (2024) 12

Authors:

yuhao Ye, Akiyoshi Yamada, Yuto Kinoshita, Jinhua Wang, Pan Nie, Liangcai Xu, Huakun Zuo, Masashi Tokunaga, Neil Harrison, Ross D McDonald, Alexey V Suslov, Arzhang Ardavan, Moon-Sun Nam, David LeBoeuf, Cyril Proust, Benoit Fauqué, Yuki Fuseya, Zengwei Zhu, Kamran Behnia

Abstract:

Bulk bismuth has a complex Landau spectrum. The small effective masses and the large g-factors are anisotropic. The chemical potential drifts at high magnetic fields. Moreover, twin boundaries further complexify the interpretation of the data by producing extra anomalies in the extreme quantum limit. Here, we present a study of angle dependence of magnetoresistance up to 65 T in bismuth complemented with Nernst, ultrasound, and magneto-optic data. All observed anomalies can be explained in a single-particle picture of a sample consisting of two twinned crystals tilted by 108° and with two adjacent crystals keeping their own chemical potentials despite a shift between chemical potentials as large as 68 meV at 65 T. This implies an energy barrier between adjacent twinned crystals reminiscent of a metal- semiconductor Schottky barrier or a p-n junction. We argue that this barrier is built by accumulating charge carriers of opposite signs across a twin boundary.
More details from the publisher
Details from ORA
More details

Fault-tolerant qubit encoding using a spin-7/2 qudit

Physical Review A American Physical Society 108 (2023) 062403

Authors:

Sumin Lim, Junjie Liu, Arzhang Ardavan

Abstract:

The implementation of error correction protocols is a central challenge in the development of practical quantum information technologies. Recently, multi-level quantum resources such as harmonic oscillators and qudits have attracted interest in this context because they offer the possibility of additional Hilbert space dimensions in a spatially compact way. Here we propose a quantum memory, implemented on a spin-7/2 nucleus hyperfine-coupled to an electron spin-1/2 qubit, which provides first order X, Y and Z error correction using significantly fewer quantum resources than the equivalently effective qubit-based protocols. Our encoding may be efficiently implemented in existing experimentally realised molecular electron-nuclear quantum spin systems. The strategy can be extended to higher-order error protection on higher-spin nuclei.
More details from the publisher
Details from ORA
More details

A continuous-wave and pulsed X-band electron spin resonance spectrometer operating in ultra-high vacuum for the study of low dimensional spin ensembles

(2023)

Authors:

Franklin H Cho, Juyoung Park, Soyoung Oh, Jisoo Yu, Yejin Jeong, Luciano Colazzo, Lukas Spree, Caroline Hommel, Arzhang Ardavan, Giovanni Boero, Fabio Donati
More details from the publisher

Title: experimental realisation of multi-qubit gates using electron paramagnetic resonance.

Nature communications 14:1 (2023) 7029

Authors:

Edmund J Little, Jacob Mrozek, Ciarán J Rogers, Junjie Liu, Eric JL McInnes, Alice M Bowen, Arzhang Ardavan, Richard EP Winpenny

Abstract:

Quantum information processing promises to revolutionise computing; quantum algorithms have been discovered that address common tasks significantly more efficiently than their classical counterparts. For a physical system to be a viable quantum computer it must be possible to initialise its quantum state, to realise a set of universal quantum logic gates, including at least one multi-qubit gate, and to make measurements of qubit states. Molecular Electron Spin Qubits (MESQs) have been proposed to fulfil these criteria, as their bottom-up synthesis should facilitate tuning properties as desired and the reproducible production of multi-MESQ structures. Here we explore how to perform a two-qubit entangling gate on a multi-MESQ system, and how to readout the state via quantum state tomography. We propose methods of accomplishing both procedures using multifrequency pulse Electron Paramagnetic Resonance (EPR) and apply them to a model MESQ structure consisting of two nitroxide spin centres. Our results confirm the methodological principles and shed light on the experimental hurdles which must be overcome to realise a demonstration of controlled entanglement on this system.
More details from the publisher
More details

High-field immiscibility of electrons belonging to adjacent twinned bismuth crystals

(2023)

Authors:

Yuhao Ye, Akiyoshi Yamada, Yuto Kinoshita, Jinhua Wang, Pan Nie, Liangcai Xu, Huakun Zuo, Masashi Tokunaga, Neil Harrison, Ross D McDonald, Alexey V Suslov, Arzhang Ardavan, Moon-Sun Nam, David LeBoeuf, Cyril Proust, Benoît Fauqué, Yuki Fuseya, Zengwei Zhu, Kamran Behnia
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet