Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Arzhang's natural habitat

Prof Arzhang Ardavan

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum spin dynamics
arzhang.ardavan@physics.ox.ac.uk
Telephone: 01865 (2)72366
Clarendon Laboratory, room 267
Personal website
  • About
  • Publications

Ordering gold nanoparticles with DNA origami nanoflowers

ACS Nano American Chemical Society 10:8 (2016) 7303-7306

Authors:

Andrew Turberfield, Robert Schreiber, Arzhang Ardavan, Ibon Santiago

Abstract:

Nanostructured materials, including plasmonic metamaterials made from gold and silver nanoparticles, provide access to new materials properties. The assembly of nanoparticles into extended arrays can be controlled through surface functionalization and the use of increasingly sophisticated linkers. We present a versatile way to control the bonding symmetry of gold nanoparticles by wrapping them in flower-shaped DNA origami structures. These ‘nanoflowers’ assemble into two-dimensonal gold nanoparticle lattices with symmetries that can be controlled through auxiliary DNA linker strands. Nanoflower lattices are true composites: interactions between the gold nanoparticles are mediated entirely by DNA, and the DNA origami will only fold into its designed form in the presence of the gold nanoparticles.
More details from the publisher
Details from ORA
More details
More details
More details

Quantum Interference in Graphene Nanoconstrictions

Nano Letters: a journal dedicated to nanoscience and nanotechnology American Chemical Society (2016)

Authors:

GA Briggs, P gehring, CS Lau, J liu, A ardavan, J warner, J mol
More details from the publisher

Quantum interference in graphene nanoconstrictions

Nano Letters American Chemical Society 16:7 (2016) 4210-4216

Authors:

Pascal Gehring, Hatef Sadeghi, Sara Sangtarash, Chit Siong Lau, Junjie Liu, Arzhang Ardavan, Jamie H Warner, Colin J Lambert, G Andrew D Briggs, Jan A Mol

Abstract:

We report quantum interference effects in the electrical conductance of chemical vapour deposited graphene nanoconstrictions fabricated using feedback controlled electroburning. The observed multi-mode Fabry-Pérot interferences can be attributed to reflections on potential steps inside the channel. Sharp anti-resonance features with a Fano line shape are observed. Theoretical modelling reveals that these Fano resonances are due to localised states inside the constriction, which couple to the delocalised states that also give rise to the Fabry-Pérot interference patterns. This study provides new insight into the interplay between two fundamental forms of quantum interference in graphene nanoconstrictions.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Antiferromagnetism in a family of S = 1 square lattice coordination polymers NiX2(pyz)2 (X = Cl, Br, I, NCS; pyz = pyrazine)

Inorganic Chemistry American Chemical Society 55:7 (2016) 3515-3529

Authors:

Junjie Liu, Paul Goddard, John Singleton, Jamie Brambleby, Francesca Foronda, Johannes S Möller, Yoshimitsu Kohama, Saman Ghannadzadeh, Arzhang Ardavan, Stephen J Blundell, Tom Lancaster, Fan Xiao, Robert C Williams, Francis L Pratt, Peter J Baker, Keola Wierschem, Saul H Lapidus, Kevin H Stone, Peter W Stephens, Jesper Bendix, Toby J Woods, Kimberly E Carreiro, Hope E Tran, Cecilia J Villa, Jamie L Manson

Abstract:

The crystal structures of NiX2(pyz)2 (X = Cl (1), Br (2), I (3) and NCS (4)) were determined at 298 K by synchrotron X-ray powder diffraction. All four compounds consist of two-dimensional (2D) square arrays self-assembled from octahedral NiN4X2 units that are bridged by pyz ligands. The 2D layered motifs displayed by 1-4 are relevant to bifluoride-bridged [Ni(HF2)(pyz)2]ZF6 (Z = P, Sb) which also possess the same 2D layers. In contrast, terminal X ligands occupy axial positions in 1-4 and cause a staggering of adjacent layers. Long-range antiferromagnetic order occurs below 1.5 (Cl), 1.9 (Br and NCS) and 2.5 K (I) as determined by heat capacity and muon-spin relaxation. The single-ion anisotropy and g factor of 2, 3 and 4 are measured by electron spin resonance where no zero–field splitting was found. The magnetism of 1-4 crosses a spectrum from quasi-two-dimensional to three-dimensional antiferromagnetism. An excellent agreement was found between the pulsedfield magnetization, magnetic susceptibility and TN of 2 and 4. Magnetization curves for 2 and 4 calculated by quantum Monte Carlo simulation also show excellent agreement with the pulsed-field data. 3 is characterized as a three-dimensional antiferromagnet with the interlayer interaction (J⊥) slightly stronger than the interaction within the two-dimensional [Ni(pyz)2]2+ square planes (Jpyz).
More details from the publisher
Details from ORA
More details
More details

Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits.

Nature communications 7 (2016) 10240

Authors:

Antonio Fernandez, Jesus Ferrando-Soria, Eufemio Moreno Pineda, Floriana Tuna, Iñigo J Vitorica-Yrezabal, Christiane Knappke, Jakub Ujma, Christopher A Muryn, Grigore A Timco, Perdita E Barran, Arzhang Ardavan, Richard EP Winpenny

Abstract:

Quantum information processing (QIP) would require that the individual units involved--qubits--communicate to other qubits while retaining their identity. In many ways this resembles the way supramolecular chemistry brings together individual molecules into interlocked structures, where the assembly has one identity but where the individual components are still recognizable. Here a fully modular supramolecular strategy has been to link hybrid organic-inorganic [2]- and [3]-rotaxanes into still larger [4]-, [5]- and [7]-rotaxanes. The ring components are heterometallic octanuclear [Cr7NiF8(O2C(t)Bu)16](-) coordination cages and the thread components template the formation of the ring about the organic axle, and are further functionalized to act as a ligand, which leads to large supramolecular arrays of these heterometallic rings. As the rings have been proposed as qubits for QIP, the strategy provides a possible route towards scalable molecular electron spin devices for QIP. Double electron-electron resonance experiments demonstrate inter-qubit interactions suitable for mediating two-qubit quantum logic gates.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 10
  • Page 11
  • Page 12
  • Page 13
  • Current page 14
  • Page 15
  • Page 16
  • Page 17
  • Page 18
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet