Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Arzhang's natural habitat

Prof Arzhang Ardavan

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum spin dynamics
arzhang.ardavan@physics.ox.ac.uk
Telephone: 01865 (2)72366
Clarendon Laboratory, room 267
Personal website
  • About
  • Publications

Three-terminal graphene single-electron transistor fabricated using feedback-controlled electroburning

(2015)

Authors:

Paweł Puczkarski, Pascal Gehring, Chit S Lau, Junjie Liu, Arzhang Ardavan, Jamie H Warner, G Andrew D Briggs, Jan A Mol
More details from the publisher

The magnetic ground state of two isostructual polymeric quantum magnets, [Cu(HF$_{2}$)(pyrazine)$_{2}$]SbF$_{6}$ and [Co(HF$_{2}$)(pyrazine)$_{2}$]SbF$_{6}$, investigated with neutron powder diffraction

(2015)

Authors:

J Brambleby, PA Goddard, RD Johnson, J Liu, D Kaminski, A Ardavan, AJ Steele, T Lancaster, P Manuel, PJ Baker, J Singleton, SG Schwalbe, PM Spurgeon, HE Tran, PK Peterson, JF Corbey, JL Manson
More details from the publisher

A spin-frustrated trinuclear copper complex based on triaminoguanidine with an energetically well-separated degenerate ground state.

Inorganic chemistry 54:7 (2015) 3432-3438

Authors:

Eike T Spielberg, Aksana Gilb, Daniel Plaul, Daniel Geibig, David Hornig, Dirk Schuch, Axel Buchholz, Arzhang Ardavan, Winfried Plass

Abstract:

We present the synthesis and crystal structure of the trinuclear copper complex [Cu3(saltag)(bpy)3]ClO4·3DMF [H5saltag = tris(2-hydroxybenzylidene)triaminoguanidine; bpy = 2,2'-bipyridine]. The complex crystallizes in the trigonal space group R3̅, with all copper ions being crystallographically equivalent. Analysis of the temperature dependence of the magnetic susceptibility shows that the triaminoguanidine ligand mediates very strong antiferromagnetic interactions (JCuCu = -324 cm(-1)). Detailed analysis of the magnetic susceptibility and magnetization data as well as X-band electron spin resonance spectra, all recorded on both powdered samples and single crystals, show indications of neither antisymmetric exchange nor symmetry lowering, thus indicating only a very small splitting of the degenerate S = (1)/2 ground state. These findings are corroborated by density functional theory calculations, which explain both the strong isotropic and negligible antisymmetric exchange interactions.
More details from the publisher
More details
More details

Surface acoustic wave devices on bulk ZnO crystals at low temperature

Applied Physics Letters AIP Publishing 106:6 (2015) 063509-063509

Authors:

EB Magnusson, BH Williams, R Manenti, M-S Nam, A Nersisyan, MJ Peterer, Arzhang Ardavan, Peter Leek

Abstract:

Surface acoustic wave (SAW) devices based on thin films of ZnO are a well established technology. However, SAW devices on bulk ZnO crystals are not practical at room temperature due to the significant damping caused by finite electrical conductivity of the crystal. Here, by operating at low temperatures, we demonstrate effective SAW devices on the (0001) surface of bulk ZnO crystals, including a delay line operating at SAW wavelengths of λ = 4 and 6 μm and a one-port resonator at a wavelength of λ = 1.6 μm. We find that the SAW velocity is temperature dependent, reaching v ≈ 2.68 km/s at 10 mK. Our resonator reaches a maximum quality factor of Qi ≈ 1.5 × 105, demonstrating that bulk ZnO is highly viable for low temperature SAW applications. The performance of the devices is strongly correlated with the bulk conductivity, which quenches SAW transmission above 200 K.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Surface acoustic wave devices on bulk ZnO at low temperature

(2014)

Authors:

Einar B Magnusson, Benjamin H Williams, Riccardo Manenti, Moon-Sun Nam, Ani Nersisyan, Michael J Peterer, Arzhang Ardavan, Peter J Leek
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Current page 16
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet