Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Arzhang's natural habitat

Prof Arzhang Ardavan

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum spin dynamics
arzhang.ardavan@physics.ox.ac.uk
Telephone: 01865 (2)72366
Clarendon Laboratory, room 267
Personal website
  • About
  • Publications

Making hybrid [n]-rotaxanes as supramolecular arrays of molecular electron spin qubits

Nature Communications Springer Nature 7:1 (2016) 10240

Authors:

Antonio Fernandez, Jesus Ferrando-Soria, Eufemio Moreno Pineda, Floriana Tuna, Iñigo J Vitorica-Yrezabal, Christiane Knappke, Jakub Ujma, Christopher A Muryn, Grigore A Timco, Perdita E Barran, Arzhang Ardavan, Richard EP Winpenny
More details from the publisher
More details
More details

Engineering coherent interactions in molecular nanomagnet dimers

npj Quantum Information Springer Nature 1:15012 (2015)

Authors:

A Ardavan, Alice Bowen, A Fernandez, Aj Fielding, D Kaminski, F Moro, Ca Muryn, Md Wise, A Ruggi, Ejl McInnes, K Severin, Ga Timco, Cr Timmel, F Tuna, Gfs Whitehead, Rep Winpenny

Abstract:

Proposals for systems embodying condensed matter spin qubits cover a very wide range of length scales, from atomic defects in semiconductors all the way to micron-sized lithographically defined structures. Intermediate scale molecular components exhibit advantages of both limits: like atomic defects, large numbers of identical components can be fabricated; as for lithographically defined structures, each component can be tailored to optimise properties such as quantum coherence. Here we demonstrate what is perhaps the most potent advantage of molecular spin qubits, the scalability of quantum information processing structures using bottom-up chemical self-assembly. Using Cr7Ni spin qubit building blocks, we have constructed several families of two-qubit molecular structures with a range of linking strategies. For each family, long coherence times are preserved, and we demonstrate control over the inter-qubit quantum interactions that can be used to mediate two-qubit quantum gates.

More details from the publisher
Details from ORA
More details
Details from ArXiV

Electron paramagnetic resonance of individual atoms on a surface

Science American Association for the Advancement of Science (AAAS) 350:6259 (2015) 417-420

Authors:

Susanne Baumann, William Paul, Taeyoung Choi, Christopher P Lutz, Arzhang Ardavan, Andreas J Heinrich
More details from the publisher
More details
More details

The magnetic ground state of two isostructual polymeric quantum magnets, [Cu(HF2)(pyrazine)SbF6 and [Co(HF2)(pyrazine)2]SbF6, investigated with neutron powder diffraction

Physical Review B American Physical Society 92:13 (2015) 134406

Authors:

J Brambleby, Paul Goddard, R Johnson, J Liu, D Kaminski, A Ardavan, AJ Steele, T Lancaster, P Manuel, PJ Baker, J Singleton, SG Schwalbe, PM Spurgeon, HE Tran, PK Peterson, JF Corbey, JL Manson, SJ Blundell

Abstract:

The magnetic ground state of two isostructural coordination polymers (i) the quasi two-dimensional S = 1/2 square-lattice antiferromagnet [Cu(HF$_{2}$)(pyrazine)$_{2}$]SbF$_{6}$; and (ii) a new compound [Co(HF$_{2}$)(pyrazine)$_{2}$]SbF$_{6}$, were examined with neutron powder diffraction measurements. We find the ordered moments of the Heisenberg S = 1/2 Cu(II) ions in [Cu(HF$_{2}$)(pyrazine)$_{2}$]SbF$_{6}$ are 0.6(1)$\mu_{B}$, whilst the ordered moments for the Co(II) ions in [Co(HF$_{2}$)(pyrazine)$_{2}$]SbF$_{6}$ are 3.02(6)$\mu_{B}$. For Cu(II), this reduced moment indicates the presence of quantum fluctuations below the ordering temperature. We show from heat capacity and electron spin resonance measurements, that due to the crystal electric field splitting of the S = 3/2 Co(II) ions in [Co(HF$_{2}$)(pyrazine)$_{2}$]SbF$_{6}$, this isostructual polymer also behaves as an effective spin-half magnet at low temperatures. The Co moments in [Co(HF$_{2}$)(pyrazine)$_{2}$]SbF$_{6}$ show strong easy-axis anisotropy, neutron diffraction data which do not support the presence of quantum fluctuations in the ground state and heat capacity data which are consistent with 2D or close to 3D spatial exchange anisotropy.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Engineering coherent interactions in molecular nanomagnet dimers

(2015)

Authors:

Arzhang Ardavan, Alice M Bowen, Antonio Fernandez, Alistair J Fielding, Danielle Kaminski, Fabrizio Moro, Christopher A Muryn, Matthew D Wise, Albert Ruggi, Eric JL McInnes, Kay Severin, Grigore A Timco, Christiane R Timmel, Floriana Tuna, George FS Whitehead, Richard EP Winpenny
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Current page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet