Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Arzhang's natural habitat

Prof Arzhang Ardavan

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum spin dynamics
arzhang.ardavan@physics.ox.ac.uk
Telephone: 01865 (2)72366
Clarendon Laboratory, room 267
Personal website
  • About
  • Publications

Robust superconducting state in the low-quasiparticle-density organic metals β″-(BEDT-TTF)4[(H3O)M(C2O4)3]Y: Superconductivity due to proximity to a charge-ordered state

Physical Review B - Condensed Matter and Materials Physics 72:1 (2005)

Authors:

AF Bangura, AI Coldea, J Singleton, A Ardavan, A Akutsu-Sato, H Akutsu, SS Turner, P Day, T Yamamoto, K Yakushi

Abstract:

We report magnetotransport measurements on the quasi-two-dimensional charge-transfer salts β″-(BEDT-TTF)4[(H3O)M(C2O4)3]Y, with Y=C6H5NO2 and C6H5CN using magnetic fields of up to 45 T and temperatures down to 0.5 K. A surprisingly robust superconducting state with an in-plane upper critical field Bc2 33T, comparable to the highest critical field of any BEDT-TTF superconductor, and critical temperature Tcâ 7K is observed when M=Ga and Y=C6H5NO2. The presence of magnetic M ions reduces the in-plane upper critical field to 18T for M=Cr and Y=C6H5NO2 and M=Fe and Y=C6H5CN. Prominent Shubnikov-de Haas oscillations are observed at low temperatures and high magnetic fields, showing that the superconducting salts possess Fermi surfaces with one or two small quasi-two-dimensional pockets, their total area comprising 6% of the room-temperature Brillouin zone; the quasiparticle effective masses were found to be enhanced when the ion M was magnetic (Fe or Cr). The low effective masses and quasiparticle densities, and the systematic variation of the properties of the β″-(BEDT-TTF)4[(H3O)M(C2O4)3]Y salts with unit-cell volume points to the possibility of a superconducting groundstate with a charge-fluctuation-mediated superconductivity mechanism such as that proposed by Merino and McKenzie [Phys. Rev. Lett. 87, 237002 (2001)], rather than the spin-fluctuation mechanism appropriate for the κ-(BEDT-TTF)2X salts. © 2005 The American Physical Society.
More details from the publisher
More details

Origin of Rapid Oscillations in Low Dimensional (TMTSF)2PF6

(2005)

Authors:

AV Kornilov, VM Pudalov, A-K Klehe, A Ardavan, JS Qualls, J Singleton
More details from the publisher

Electron spin relaxation of N@C60 in CS2

(2005)

Authors:

John JL Morton, Alexei M Tyryshkin, Arzhang Ardavan, Kyriakos Porfyrakis, SA Lyon, G Andrew D Briggs
More details from the publisher

Distinguishing two isomers of Nd@C82 by scanning tunneling microscopy and density functional theory

Chemical Physics Letters 414:4-6 (2005) 307-310

Authors:

DF Leigh, JHG Owen, SM Lee, K Porfyrakis, A Ardavan, TJS Dennis, DG Pettifor, GAD Briggs

Abstract:

Two different structural isomers of Nd@C82 have been isolated using two-stage high-performance liquid chromatography. Their molecular orbital structures have been studied by a combination of scanning tunneling microscopy (STM) and density functional theory (DFT). Matching filled and empty-states STM images to DFT calculations allowed us to distinguish directly between the two isomers on the surface. © 2005 Elsevier B.V. All rights reserved.
More details from the publisher

Isolation and spectroscopic characterization of two isomers of the metallofullerene Nd@C82

AIP Conference Proceedings 786 (2005) 73-76

Authors:

K Porfyrakis, M Kanai, GW Morley, A Ardavan, TJS Dennis, GAD Briggs

Abstract:

For the first time, two types of the metallofullerene Nd@C82 have been isolated and characterized. HPLC was used to isolate Nd@C 82(I, II). The two isomers were characterized by mass spectrometry and UV-Vis-NIR absorption spectroscopy. Nd@C82(I) was found to be similar in structure to the main isomer of other lanthanofullerenes such as La@C82, as was previously reported. We assign Nd@C82(I) to have a C2v cage symmetry. Nd@C82(II) showed a markedly different UV-Vis-NIR absorption spectrum to Nd@C82(I). Its spectrum is in good agreement with that of the minor isomer of metallofullerenes such as Pr@C82. We therefore assign Nd@C82(II) to have a C s cage symmetry. In contrast to other metallofullerenes, both isomers appear to be equally abundant. © 2005 American Institute of Physics.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 49
  • Page 50
  • Page 51
  • Page 52
  • Current page 53
  • Page 54
  • Page 55
  • Page 56
  • Page 57
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet