Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Arzhang's natural habitat

Prof Arzhang Ardavan

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum spin dynamics
arzhang.ardavan@physics.ox.ac.uk
Telephone: 01865 (2)72366
Clarendon Laboratory, room 267
Personal website
  • About
  • Publications

Magnetic oscillations, disorder and the Hofstadter butterfly in finite systems

SYNTHETIC MET 154:1-3 (2005) 265-268

Authors:

JG Analytis, SJ Blundell, A Ardavan

Abstract:

We present numerical calculations of a tight-binding model applied to a finite square lattice in the presence of a perpendicular magnetic field. The persistent current associated with each eigenstate is calculated, the chirality of which is determined by whether the eigenstate exists within the bulk or localised to the edges of the lattice. This treatment allows us to extract oscillations in the magnetization, which are analogous to de Haas-van Alphen oscillations. We consider the influence of short range disorder and long range potential modulations on these systems.
More details from the publisher

Millimetre-wave studies on the high-spin molecules Cr-10(OMe)(20)(O2CCMe3)(10) and Cr12O9(OH)(3)(O2CCMe3)(15)

SYNTHETIC MET 154:1-3 (2005) 305-308

Authors:

S Sharmin, A Ardavan, SJ Blundell, AI Coldea

Abstract:

We report millimetre-wave electron spin resonance (ESR) measurements on single crystals of the high-spin molecules Cr-10(OMe)(20)(O2CCMe3)(10) and Cr12O9(OH)(3)(O2CCMe3)(15) within a temperature range of 1.4 K to 50 K and in magnetic fields of up to 5 Tesla. In our experiments it is possible to vary the orientation of the magnetic field with respect to the crystal axes, and thus to study the ESR lineshapes as a function of both temperature and angle. Our results confirm that Cr-10(OMe)(20)(O2CCMe3)(10) behaves as a single-molecule magnet with S = 15 and D = -0.03 K, while Cr12O9(OH)(3)(O2CCMe3)(15) has S = 6 and D similar to 0.1 K. A comparison of the experimental spectra with numerical simulations gives good agreement at low temperatures. At higher temperatures, we observe a narrowing of the ESR spectrum that is not explained by simple models.
More details from the publisher

Angle-dependent magneto-transport measurements on kappa-(BEDT-TTF)(2)Cu(NCS)(2) under pressure

SYNTHETIC MET 153:1-3 (2005) 449-452

Authors:

AF Bangura, PA Goddard, S Tozer, AI Coldea, RD McDonald, J Singleton, A Ardavan, J Schleuter

Abstract:

Magnetotransport measurements have been performed on single crystals Of kappa-(BEDT-TTF)(2)Cu(NCS)(2) in fields of up to 33 T at temperatures between 500 mK and 4.2K. Using a diamond anvil cell mounted on a goniometer, measurements of the angle and temperature dependence of the interlayer resistance, R-zz, under hydrostatic pressures between 1.1 kbar and 17.3 kbar were performed. For the first time we have been able to measure angle-dependent magnetoresistance oscillations under pressure due to both the 1D and 2D Fermi surfaces in addition to Shubnikov de Haas oscillations. The results show that the shape of the elliptical quasi-2D Fermi-pocket is more elongated under a hydrostatic pressure of 9.8 kbar compared with ambient pressure. When the magnetic field B is close to parallel to the highly conductive plane, bc, a peak in R-zz is observed with an angular width determined by the ratio of the maximum inter- and intra-layer Fermi velocities. The width of this peak is found to increase with pressure suggesting that the Fermi surface becomes more three-dimensional upon application of pressure.
More details from the publisher

A new mechanism for electron spin echo envelope modulation.

J Chem Phys 122:17 (2005) 174504

Authors:

John JL Morton, Alexei M Tyryshkin, Arzhang Ardavan, Kyriakos Porfyrakis, SA Lyon, G Andrew D Briggs

Abstract:

Electron spin echo envelope modulation (ESEEM) has been observed for the first time from a coupled heterospin pair of electron and nucleus in liquid solution. Previously, modulation effects in spin-echo experiments have only been described in liquid solutions for a coupled pair of homonuclear spins in nuclear magnetic resonance or a pair of resonant electron spins in electron paramagnetic resonance. We observe low-frequency ESEEM (26 and 52 kHz) due to a new mechanism present for any electron spin with S > 12 that is hyperfine coupled to a nuclear spin. In our case these are electron spin (S = 32) and nuclear spin (I = 1) in the endohedral fullerene N@C(60). The modulation is shown to arise from second-order effects in the isotropic hyperfine coupling of an electron and (14)N nucleus.
More details from the publisher
More details
Details from ArXiV

A new mechanism for electron spin echo envelope modulation

Journal of Chemical Physics 122:17 (2005)

Authors:

JJL Morton, AM Tyryshkin, A Ardavan, K Porfyrakis, SA Lyon, GAD Briggs

Abstract:

Electron spin echo envelope modulation (ESEEM) has been observed for the first time from a coupled heterospin pair of electron and nucleus in liquid solution. Previously, modulation effects in spin-echo experiments have only been described in liquid solutions for a coupled pair of homonuclear spins in nuclear magnetic resonance or a pair of resonant electron spins in electron paramagnetic resonance. We observe low-frequency ESEEM (26 and 52 kHz) due to a new mechanism present for any electron spin with S>12 that is hyperfine coupled to a nuclear spin. In our case these are electron spin (S=32) and nuclear spin (I=1) in the endohedral fullerene N@ C60. The modulation is shown to arise from second-order effects in the isotropic hyperfine coupling of an electron and N14 nucleus. © 2005 American Institute of Physics.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 50
  • Page 51
  • Page 52
  • Page 53
  • Current page 54
  • Page 55
  • Page 56
  • Page 57
  • Page 58
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet