Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Arzhang's natural habitat

Prof Arzhang Ardavan

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum spin dynamics
arzhang.ardavan@physics.ox.ac.uk
Telephone: 01865 (2)72366
Clarendon Laboratory, room 267
Personal website
  • About
  • Publications

High Fidelity Single Qubit Operations using Pulsed EPR

(2005)

Authors:

John JL Morton, Alexei M Tyryshkin, Arzhang Ardavan, Kyriakos Porfyrakis, SA Lyon, G Andrew D Briggs
More details from the publisher

Electron paramagnetic resonance studies of the high-spin molecule Cr10 (OMe) 20 (O2 CCMe3) 10

Applied Physics Letters 86:3 (2005) 1-3

Authors:

S Sharmin, A Ardavan, SJ Blundell, AI Coldea, EJL Mcinnes, D Low

Abstract:

We report millimeter-wave magneto-optical measurements on the high-spin molecule, Cr10 (OMe) 20 (O2 CCMe3) 10. The dependence of the electron paramagnetic resonance as a function of orientation and temperature demonstrates that this compound behaves as a single molecule magnet, and exhibits one of the smallest zero-field splittings (D=-0.045±0.004 K) yet reported for such a system. © 2005 American Institute of Physics.
More details from the publisher

Chemical reactions inside single-walled carbon nano test-tubes

Chemical Communications (2005) 37-39

Authors:

DA Britz, AN Khlobystov, K Porfyrakis, A Ardavan, GAD Briggs

Abstract:

We report the application of SWNTs as templates for forming covalent polymeric chains from C60O reacting inside SWNTs; the resulting peapod polymer topology is different from the bulk polymer in that it is linear and unbranched.
More details from the publisher

Measuring errors in single-qubit rotations by pulsed electron paramagnetic resonance

Physical Review A - Atomic, Molecular, and Optical Physics 71:1 (2005)

Authors:

JJL Morton, AM Tyryshkin, A Ardavan, K Porfyrakis, SA Lyon, GAD Briggs

Abstract:

The ability to measure and reduce systematic errors in single-qubit logic gates is crucial when evaluating quantum computing implementations. We describe pulsed electron paramagnetic resonance (EPR) sequences that can be used to measure precisely even small systematic errors in rotations of electron-spin-based qubits. Using these sequences we obtain values for errors in the rotation angle and axis for single-qubit rotations using a commercial EPR spectrometer. We conclude that errors in qubit operations by pulsed EPR are not limiting factors in the implementation of electron-spin-based quantum computers. © 2005 The American Physical Society.
More details from the publisher

Chemical reactions inside single-walled carbon nano test-tubes.

Chemical Communications 1 (2005) 37-39

Authors:

GA Briggs, Britz, D A, Khlobystov, A N, Porfyrakis, K
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 51
  • Page 52
  • Page 53
  • Page 54
  • Current page 55
  • Page 56
  • Page 57
  • Page 58
  • Page 59
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet