Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Arzhang's natural habitat

Prof Arzhang Ardavan

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Quantum spin dynamics
arzhang.ardavan@physics.ox.ac.uk
Telephone: 01865 (2)72366
Clarendon Laboratory, room 267
Personal website
  • About
  • Publications

Angle-dependent magnetoresistance of the layered organic superconductor κ-(ET)2Cu(NCS)2: Simulation and experiment

Physical Review B - Condensed Matter and Materials Physics 69:17 (2004)

Authors:

PA Goddard, SJ Blundell, J Singleton, RD McDonald, A Ardavan, A Narduzzo, JA Schlueter, AM Kini, T Sasaki

Abstract:

The angle dependences of the magnetoresistance of two different isotopic substitutions (deuterated and undeuterated) of the layered organic superconductor κ-(ET)2Cu(NCS)2 are presented (where ET is the organic molecule bis(ethylenedithio)-tetrathiafulvalene). The angle-dependent magnetoresistance oscillations (AMRO) arising from the quasi-one-dimensional and quasi-two-dimensional Fermi surfaces in this material are easily confused. By using the Boltzmann transport equation extensive simulations of the AMRO are made that reveal the subtle differences between the different species of oscillation. No significant differences are observed in the electronic parameters derived from quantum oscillations and AMRO for the two isotopic substitutions. The interlayer transfer integrals are determined for both isotopic substitutions and a slight difference is observed which may account for the negative isotope effect previously reported. The success of the semiclassical simulations suggests that non-Fermi liquid effects are not required to explain the interlayer transport in this system.
More details from the publisher
More details

Landau levels, molecular orbitals, and the Hofstadter butterfly in finite systems

American Journal of Physics 72:5 (2004) 613-618

Authors:

JG Analytis, SJ Blundell, A Ardavan

Abstract:

The Hofstadter butterfly is the energy spectrum of an infinite square lattice, plotted as a function of the magnetic field. We illustrate a method of calculating similar spectra for finite lattices in a magnetic field, using methods that consider the appropriate molecular orbitals, and find that the spectra resemble the Hofstadter butterfly. We relate the bonding and antibonding orbitals used to describe small systems to the Landau levels of the infinite system. This approach provides an unusual, but instructive, method of introducing the physics of Landau levels from the basic quantum mechanics of small systems. © 2004 American Association of Physics Teachers.
More details from the publisher
More details

Spectral and polarization characteristics of the nonspherically decaying radiation generated by polarization currents with superluminally rotating distribution patterns.

J Opt Soc Am A Opt Image Sci Vis 21:5 (2004) 858-872

Authors:

Houshang Ardavan, Arzhang Ardavan, John Singleton

Abstract:

We present a theoretical study of the emission from a superluminal polarization current whose distribution pattern rotates (with an angular frequency omega) and oscillates (with a frequency Omega) at the same time and that comprises both poloidal and toroidal components. This type of polarization current is found in recent practical machines designed to investigate superluminal emission. We find that the superluminal motion of the distribution pattern of the emitting current generates localized electromagnetic waves that do not decay spherically, i.e., that do not have an intensity diminishing as RP(-2) with the distance RP from their source. The nonspherical decay of the focused wave packets that are emitted by the polarization currents does not contravene conservation of energy: The constructive interference of the constituent waves of such propagating caustics takes place within different solid angles on spheres of different radii (RP) centered on the source. For a polarization current whose longitudinal distribution (over an azimuthal interval of length 2pi) consists of m cycles of a sinusoidal wave train, the nonspherically decaying part of the emitted radiation contains the frequencies Omega +/- momega; i.e., it contains only the frequencies involved in the creation and implementation of the source. This is in contrast to recent studies of the spherically decaying emission, which was shown to contain much higher frequencies. The polarization of the emitted radiation is found to be linear for most configurations of the source.
More details from the publisher
More details

The role of magnetic ions on the magnetotransport properties of the charge-transfer salts beta ''-BEDT-TTF4[(H3O)M(C2O4)(3)]C5H5N where M = Ga3+, Cr3+ or Fe3+

J MAGN MAGN MATER 272-76 (2004) 1062-1064

Authors:

AI Coldea, AF Bangura, J Singleton, A Ardavan, A Akutsu-Sato, H Akutsu, SS Turner, P Day

Abstract:

We report high-field magneto transport measurements on beta''- BEDT-TTF4[(H3O)M(C2O4)(3)]C5H5N, where M = Ga3+, Cr3+ or Fe3+. In spite of the differing M ions, these compounds have very similar Fermi surfaces. We observe four distinct Shubnikov-de Haas frequencies, corresponding to four Fermi-surface pockets; the frequencies exhibit the additive relationship expected for a compensated semimetal. The compounds show paramagnetic behaviour and no superconductivity down to 0.5 K, in contrast to other materials of the same family with different solvent molecules. (C) 2003 Elsevier B.V. All rights reserved.
More details from the publisher

A new superfluid in organic molecular metals at high magnetic fields

J PHYS IV 114 (2004) 257-261

Authors:

J Singleton, N Harrison, A Bangura, A Ardavan, LK Montgomery

Abstract:

We show that the coexistence of a quasi-two-dimensional Fermi-surface exhibiting Landau quantisation and a charge-density wave leads to a screening of electromagnetic fields at the sample Surface. Hall potential experiments demonstrate that this screening is responsible for some of the unusual phenomena observed in the high-field CDWx state of alpha-(BEDT-TTF)(2)KHg(SCN)(4).
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 55
  • Page 56
  • Page 57
  • Page 58
  • Current page 59
  • Page 60
  • Page 61
  • Page 62
  • Page 63
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet