Aerodynamic Stability and the Growth of Triangular Snow Crystals
The Microscope McCrone Research Institute 4:57 (2009) 157-163
Abstract:
We describe laboratory-grown snow crystals that exhibit a triangular, plate-like morphology, and we show that the occurrence of these crystals is much more frequent than one would expect from random growth perturbations of the more-typical hexagonal forms. We then describe an aerodynamic model that explains the formation of these crystals. A single growth perturbation on one facet of a hexagonal plate leads to air flow around the crystal that promotes the growth of alternating facets. Aerodynamic effects thus produce a weak growth instability that can cause hexagonal plates to develop into triangular plates. This mechanism solves a very old puzzle, as observers have been documenting the unexplained appearance of triangular snow crystals in nature for nearly two centuries.Advancing Organized Convection Representation in the Unified Model: Implementing and Enhancing Multiscale Coherent Structure Parameterization
Journal of Advances in Modelling Earth Systems
Characterizing uncertainty in deep convection triggering using explainable machine learning
Journal of the Atmospheric Sciences American Meteorological Society
Abstract:
Realistically representing deep atmospheric convection is important for accurate numerical weather and climate simulations. However, parameterizing where and when deep convection occurs (“triggering”) is a well-known source of model uncertainty. Most triggers parameterize convection deterministically, without considering the uncertainty in the convective state as a stochastic process. In this study, we develop a machine learning model, a random forest, that predicts the probability of deep convection, and then apply clustering of SHAP values, an explainable machine learning method, to characterize the uncertainty of convective events. The model uses observed large-scale atmospheric variables from the Atmospheric Radiation Measurement constrained variational analysis dataset over the Southern Great Plains, US. The analysis of feature importance shows which mechanisms driving convection are most important, with large-scale vertical velocity providing the highest predictive power for more certain, or easier to predict, convective events, followed by the dynamic generation rate of dilute convective available potential energy. Predictions of uncertain convective events instead rely more on other features such as precipitable water or low-level temperature. The model outperforms conventional convective triggers. This suggests that probabilistic machine learning models can be used as stochastic parameterizations to improve the occurrence of convection in weather and climate models in the future.Climate SPHINX: evaluating the impact of resolution and stochastic physics parameterisations in climate simulations
Geoscientific Model Development European Geosciences Union