Forcing single column models using high-resolution model simulations
Journal of Advances in Modeling Earth Systems Wiley 10:8 (2018) 1833-1857
Abstract:
To use single column models (SCMs) as a research tool for parametrisation development and process studies, the SCM must be supplied with realistic initial profiles, forcing fields and boundary conditions. We propose a new technique for deriving these required profiles, motivated by the increase in number and scale of high-resolution convection-permitting simulations. We suggest that these high-resolution simulations be coarse-grained to the required resolution of an SCM, and thereby be used as a proxy for the ‘true’ atmosphere. This paper describes the implementation of such a technique. We test the proposed methodology using high-resolution data from the UK Met Office’s Unified Model (MetUM), with a resolution of 4 km, covering a large tropical domain. This data is coarse grained and used to drive the European Centre for Medium-Range Weather Forecast’s (ECMWF) Integrated Forecasting System (IFS) SCM. The proposed method is evaluated by deriving IFS SCM forcing profiles from a consistent T639 IFS simulation. The SCM simulations track the global model, indicating a consistency between the estimated forcing fields and the ‘true’ dynamical forcing in the global model. We demonstrate the benefits of selecting SCM forcing profiles from across a large-domain, namely robust statistics, and the ability to test the SCM over a range of boundary conditions. We also compare driving the SCM with the coarse-grained dataset to driving it using the ECMWF operational analysis. We conclude by highlighting the importance of understanding biases in the high-resolution dataset, and suggest that our approach be used in combination with observationally derived forcing datasets.The benefits of global high-resolution for climate simulation: process-understanding and the enabling of stakeholder decisions at the regional scale.
Bulletin of the American Meteorological Society (2018)
Systematic Errors in Weather and Climate Models: Nature, Origins, and Way Forward
Bulletin of the American Meteorological Society (2017)
Stochastic representations of model uncertainties at ECMWF: state of the art and future vision
Quarterly Journal of the Royal Meteorological Society Wiley 143:707 (2017) 2315-2339
Abstract:
Members in ensemble forecasts differ due to the representations of initial uncertainties and model uncertainties. The inclusion of stochastic schemes to represent model uncertainties has improved the probabilistic skill of the ECMWF ensemble by increasing reliability and reducing the error of the ensemble mean. Recent progress, challenges and future directions regarding stochastic representations of model uncertainties at ECMWF are described in this paper. The coming years are likely to see a further increase in the use of ensemble methods in forecasts and assimilation. This will put increasing demands on the methods used to perturb the forecast model. An area that is receiving a greater attention than 5 to 10 years ago is the physical consistency of the perturbations. Other areas where future efforts will be directed are the expansion of uncertainty representations to the dynamical core and to other components of the Earth system as well as the overall computational efficiency of representing model uncertainty.The impact of stochastic parametrisations on the representation of the Asian summer monsoon
Climate Dynamics Springer 50:5-6 (2017) 2269-2282