Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Dr Christopher Ballance

Future Leaders Fellow

Research theme

  • Quantum information and computation

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
chris.ballance@physics.ox.ac.uk
Telephone: 01865 (2)72122
Clarendon Laboratory, room 512.40.23
  • About
  • Publications

Single-Qubit Gates

Chapter in High-Fidelity Quantum Logic in Ca+, Springer Nature (2017) 87-96
More details from the publisher

Trapped-Ion Qubits

Chapter in High-Fidelity Quantum Logic in Ca+, Springer Nature (2017) 5-14
More details from the publisher

Minimally complex ion traps as modules for quantum communication and computing

New Journal of Physics IOP (2016)

Authors:

R Nigmatullin, CJ Ballance, ND Beaudrap, SC Benjamin

Abstract:

© 2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. Optically linked ion traps are promising as components of network-based quantum technologies, including communication systems and modular computers. Experimental results achieved to date indicate that the fidelity of operations within each ion trap module will be far higher than the fidelity of operations involving the links; fortunately internal storage and processing can effectively upgrade the links through the process of purification. Here we perform the most detailed analysis to date on this purification task, using a protocol which is balanced to maximise fidelity while minimising the device complexity and the time cost of the process. Moreover we 'compile down' the quantum circuit to device-level operations including cooling and shuttling events. We find that a linear trap with only five ions (two of one species, three of another) can support our protocol while incorporating desirable features such as global control, i.e. laser control pulses need only target an entire zone rather than differentiating one ion from its neighbour. To evaluate the capabilities of such a module we consider its use both as a universal communications node for quantum key distribution, and as the basic repeating unit of a quantum computer. For the latter case we evaluate the threshold for fault tolerant quantum computing using the surface code, finding acceptable fidelities for the 'raw' entangling link as low as 83% (or under 75% if an additional ion is available).
More details from the publisher
Details from ORA
More details
More details

High-fidelity trapped-ion quantum logic using near-field microwaves

Phys Rev Lett American Physical Society 117:14 (2016) 140501

Authors:

Thomas P Harty, MA Sepiol, David T Allcock, Christopher J Ballance, James Tarlton, David Lucas

Abstract:

We demonstrate a two-qubit logic gate driven by near-field microwaves in a room-temperature microfabricated surface ion trap. We introduce a dynamically decoupled gate method, which stabilizes the qubits against fluctuating energy shifts and avoids the need to null the microwave field. We use the gate to produce a Bell state with fidelity 99.7(1)%, after accounting for state preparation and measurement errors. The gate is applied directly to ^{43}Ca^{+} hyperfine "atomic clock" qubits (coherence time T_{2}^{*}≈50  s) using the oscillating magnetic field gradient produced by an integrated microwave electrode.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

High-fidelity trapped-ion quantum logic using near-field microwaves

(2016)

Authors:

TP Harty, MA Sepiol, DTC Allcock, CJ Ballance, JE Tarlton, DM Lucas
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet