Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Dr Christopher Ballance

Future Leaders Fellow

Research theme

  • Quantum information and computation

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
chris.ballance@physics.ox.ac.uk
Telephone: 01865 (2)72122
Clarendon Laboratory, room 512.40.23
  • About
  • Publications

Entanglement-Enhanced Frequency Comparison of Two Optical Atomic Clocks

Institute of Electrical and Electronics Engineers (IEEE) 00 (2023) 1-1

Authors:

BC Nichol, R Srinivas, DP Nadlinger, P Drmota, D Main, G Araneda, CJ Ballance, DM Lucas
More details from the publisher

How to wire a 1000-qubit trapped ion quantum computer

(2023)

Authors:

M Malinowski, DTC Allcock, CJ Ballance
More details from the publisher

Breaking the entangling gate speed limit for trapped-ion qubits using a phase-stable standing wave

(2023)

Authors:

S Saner, O Băzăvan, M Minder, P Drmota, DJ Webb, G Araneda, R Srinivas, DM Lucas, CJ Ballance
More details from the publisher

Verifiable blind quantum computing with trapped ions and single photons

(2023)

Authors:

P Drmota, DP Nadlinger, D Main, BC Nichol, EM Ainley, D Leichtle, A Mantri, E Kashefi, R Srinivas, G Araneda, CJ Ballance, DM Lucas
More details from the publisher
Details from ArXiV

Robust quantum memory in a trapped-ion quantum network node

Physical Review Letters American Physical Society 130 (2023) 090803

Authors:

Peter Drmota, Dougal Main, David P Nadlinger, Bethan Nichol, Marius A Weber, Ellis M Ainley, Ayush Agrawal, Raghavendra Srinivas, Gabriel Araneda, Chris J Ballance, David Lucas

Abstract:

We integrate a long-lived memory qubit into a mixed-species trapped-ion quantum network node. Ion-photon entanglement first generated with a network qubit in 88Sr+ is transferred to 43Ca+ with 0.977(7) fidelity, and mapped to a robust memory qubit. We then entangle the network qubit with another photon, which does not affect the memory qubit. We perform quantum state tomography to show that the fidelity of ion-photon entanglement decays ∼ 70 times slower on the memory qubit. Dynamical decoupling further extends the storage time; we measure an ion-photon entanglement fidelity of 0.81(4) after 10 s.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Current page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet