Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Port Meadow flooded, February 2021

Professor Richard Berry D. Phil.

Professor of Biological Physics

Research theme

  • Biological physics

Sub department

  • Condensed Matter Physics

Research groups

  • Oxford Molecular Motors
Richard.Berry@physics.ox.ac.uk
Telephone: 01865 (2)72288,01865 (2)71723
Clarendon Laboratory, room 273B
  • About
  • Links
  • Publications

Temperature dependences of torque generation and membrane voltage in the bacterial flagellar motor.

Biophys J 105:12 (2013) 2801-2810

Authors:

Yuichi Inoue, Matthew AB Baker, Hajime Fukuoka, Hiroto Takahashi, Richard M Berry, Akihiko Ishijima

Abstract:

In their natural habitats bacteria are frequently exposed to sudden changes in temperature that have been shown to affect their swimming. With our believed to be new methods of rapid temperature control for single-molecule microscopy, we measured here the thermal response of the Na(+)-driven chimeric motor expressed in Escherichia coli cells. Motor torque at low load (0.35 μm bead) increased linearly with temperature, twofold between 15°C and 40°C, and torque at high load (1.0 μm bead) was independent of temperature, as reported for the H(+)-driven motor. Single cell membrane voltages were measured by fluorescence imaging and these were almost constant (∼120 mV) over the same temperature range. When the motor was heated above 40°C for 1-2 min the torque at high load dropped reversibly, recovering upon cooling below 40°C. This response was repeatable over as many as 10 heating cycles. Both increases and decreases in torque showed stepwise torque changes with unitary size ∼150 pN nm, close to the torque of a single stator at room temperature (∼180 pN nm), indicating that dynamic stator dissociation occurs at high temperature, with rebinding upon cooling. Our results suggest that the temperature-dependent assembly of stators is a general feature of flagellar motors.
More details from the publisher
Details from ORA
More details

Load-dependent assembly of the bacterial flagellar motor.

mBio 4:4 (2013)

Authors:

Murray J Tipping, Nicolas J Delalez, Ren Lim, Richard M Berry, Judith P Armitage

Abstract:

UNLABELLED: It is becoming clear that the bacterial flagellar motor output is important not only for bacterial locomotion but also for mediating the transition from liquid to surface living. The output of the flagellar motor changes with the mechanical load placed on it by the external environment: at a higher load, the motor runs more slowly and produces higher torque. Here we show that the number of torque-generating units bound to the flagellar motor also depends on the external mechanical load, with fewer stators at lower loads. Stalled motors contained at least as many stators as rotating motors at high load, indicating that rotation is unnecessary for stator binding. Mutant stators incapable of generating torque could not be detected around the motor. We speculate that a component of the bacterial flagellar motor senses external load and mediates the strength of stator binding to the rest of the motor. IMPORTANCE: The transition between liquid living and surface living is important in the life cycles of many bacteria. In this paper, we describe how the flagellar motor, used by bacteria for locomotion through liquid media and across solid surfaces, is capable of adjusting the number of bound stator units to better suit the external load conditions. By stalling motors using external magnetic fields, we also show that rotation is not required for maintenance of stators around the motor; instead, torque production is the essential factor for motor stability. These new results, in addition to previous data, lead us to hypothesize that the motor stators function as mechanosensors as well as functioning as torque-generating units.
More details from the publisher
Details from ORA
More details

High-resolution single-molecule characterization of the enzymatic states in Escherichia coli F1-ATPase.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences 368:1611 (2013) 20120023

Authors:

T Bilyard, M Nakanishi-Matsui, BC Steel, T Pilizota, AL Nord, H Hosokawa, M Futai, RM Berry

Abstract:

The rotary motor F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) is one of the best-studied of all molecular machines. F(1)-ATPase is the part of the enzyme F(1)F(O)-ATP synthase that is responsible for generating most of the ATP in living cells. Single-molecule experiments have provided a detailed understanding of how ATP hydrolysis and synthesis are coupled to internal rotation within the motor. In this work, we present evidence that mesophilic F(1)-ATPase from Escherichia coli (EF(1)) is governed by the same mechanism as TF(1) under laboratory conditions. Using optical microscopy to measure rotation of a variety of marker particles attached to the γ-subunit of single surface-bound EF(1) molecules, we characterized the ATP-binding, catalytic and inhibited states of EF(1). We also show that the ATP-binding and catalytic states are separated by 35±3°. At room temperature, chemical processes occur faster in EF(1) than in TF(1), and we present a methodology to compensate for artefacts that occur when the enzymatic rates are comparable to the experimental temporal resolution. Furthermore, we show that the molecule-to-molecule variation observed at high ATP concentration in our single-molecule assays can be accounted for by variation in the orientation of the rotating markers.

High-resolution single-molecule characterization of the enzymatic states in Escherichia coli F1-ATPase.

Philos Trans R Soc Lond B Biol Sci 368:1611 (2013) 20120023

Authors:

Thomas Bilyard, Mayumi Nakanishi-Matsui, Bradley C Steel, Teuta Pilizota, Ashley L Nord, Hiroyuki Hosokawa, Masamitsu Futai, Richard M Berry

Abstract:

The rotary motor F(1)-ATPase from the thermophilic Bacillus PS3 (TF(1)) is one of the best-studied of all molecular machines. F(1)-ATPase is the part of the enzyme F(1)F(O)-ATP synthase that is responsible for generating most of the ATP in living cells. Single-molecule experiments have provided a detailed understanding of how ATP hydrolysis and synthesis are coupled to internal rotation within the motor. In this work, we present evidence that mesophilic F(1)-ATPase from Escherichia coli (EF(1)) is governed by the same mechanism as TF(1) under laboratory conditions. Using optical microscopy to measure rotation of a variety of marker particles attached to the γ-subunit of single surface-bound EF(1) molecules, we characterized the ATP-binding, catalytic and inhibited states of EF(1). We also show that the ATP-binding and catalytic states are separated by 35±3°. At room temperature, chemical processes occur faster in EF(1) than in TF(1), and we present a methodology to compensate for artefacts that occur when the enzymatic rates are comparable to the experimental temporal resolution. Furthermore, we show that the molecule-to-molecule variation observed at high ATP concentration in our single-molecule assays can be accounted for by variation in the orientation of the rotating markers.
More details from the publisher
Details from ORA
More details

Quantification of flagellar motor stator dynamics through in vivo proton-motive force control.

Mol Microbiol 87:2 (2013) 338-347

Authors:

Murray J Tipping, Bradley C Steel, Nicolas J Delalez, Richard M Berry, Judith P Armitage

Abstract:

The bacterial flagellar motor, one of the few rotary motors in nature, produces torque to drive the flagellar filament by ion translocation through membrane-bound stator complexes. We used the light-driven proton pump proteorhodopsin (pR) to control the proton-motive force (PMF) in vivo by illumination. pR excitation was shown to be sufficient to replace native PMF generation, and when excited in cells with intact native PMF generation systems increased motor speed beyond the physiological norm. We characterized the effects of rapid in vivo PMF changes on the flagellar motor. Transient PMF disruption events from loss of illumination caused motors to stop, with rapid recovery of their previous rotation rate after return of illumination. However, extended periods of PMF loss led to stepwise increases in rotation rate upon PMF return as stators returned to the motor. The rate constant for stator binding to a putative single binding site on the motor was calculated to be 0.06 s(-1). Using GFP-tagged MotB stator proteins, we found that transient PMF disruption leads to reversible stator diffusion away from the flagellar motor, showing that PMF presence is necessary for continued motor integrity, and calculated a stator dissociation rate of 0.038 s(-1).
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet