A catch-bond drives stator mechanosensitivity in the Bacterial Flagellar Motor
(2017)
Transient pauses of the bacterial flagellar motor at low load
NEW JOURNAL OF PHYSICS 18 (2016) ARTN 115002
Single-Molecule Imaging of Electroporated Dye-Labelled CheY in Live E. coli
Philosophical Transactions B: Biological Sciences Royal Society 371:1707 (2016)
Abstract:
For the last two decades, the use of genetically fused Fluorescent Proteins has greatly contributed to the study of chemotactic signalling in E. coli including the activation of the response regulator protein CheY and its interaction with the flagellar motor. However, this approach suffers from a number of limitations, both biological and biophysical: for example, not all fusions are fully functional when fused to a bulky FP, which can have a similar molecular weight to its fused counterpart; they may interfere with the native interactions of the protein, and the chromophores of FPs have low brightness and photostability and fast photobleaching rates. Employing a recently developed technique for the electroporation of fluorescently labelled proteins in live bacteria has enabled us to bypass these limitations and study the in vivo behaviour of CheY at the single molecule level. Here we show that purified CheY proteins labelled with organic dyes can be internalized into E. coli cells in controllable concentrations and imaged with video fluorescence microscopy. The use of this approach is illustrated by showing single CheY molecules diffusing within cells and interacting with the sensory clusters and the flagellar motors in real time.Mutations targeting the plug-domain of the Shewanella oneidensis proton-driven stator allow swimming at increased viscosity and under anaerobic conditions
Molecular Microbiology John Wiley & Sons Ltd 102:5 (2016) 925-938
Abstract:
Shewanella oneidensis MR-1 possesses two different stator units to drive flagellar rotation, the Na+-dependent PomAB stator and the H+-driven MotAB stator, the latter possibly acquired by lateral gene transfer. Although either stator can independently drive swimming through liquid, MotAB-driven motors cannot support efficient motility in structured environments or swimming under anaerobic conditions. Using ΔpomAB cells we isolated spontaneous mutants able to move through soft agar. We show that a mutation that alters the structure of the plug domain in MotB affects motor functions and allows cells to swim through media of increased viscosity and under anaerobic conditions. The number and exchange rates of the mutant stator around the rotor were not significantly different from wild-type stators, suggesting that the number of stators engaged is not the cause of increased swimming efficiency. The swimming speeds of planktonic mutant MotAB-driven cells was reduced, and overexpression of some of these stators caused reduced growth rates, implying that mutant stators not engaged with the rotor allow some proton leakage. The results suggest that the mutations in the MotB plug domain alter the proton interactions with the stator ion channel in a way that both increases torque output and allows swimming at decreased pmf values. This article is protected by copyright. All rights reserved.A modular platform for one-step assembly of multi-component membrane systems by fusion of charged proteoliposomes
Nature Communications Nature Publishing Group 7 (2016) 13025