Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Port Meadow flooded, February 2021

Professor Richard Berry D. Phil.

Professor of Biological Physics

Research theme

  • Biological physics

Sub department

  • Condensed Matter Physics

Research groups

  • Oxford Molecular Motors
Richard.Berry@physics.ox.ac.uk
Telephone: 01865 (2)72288,01865 (2)71723
Clarendon Laboratory, room 273B
  • About
  • Links
  • Publications

Dual stator dynamics in the Shewanella oneidensis MR‐1 flagellar motor

Molecular Microbiology Wiley 96:5 (2015) 993-1001

Authors:

Anja Paulick, Nicolas J Delalez, Susanne Brenzinger, Bradley C Steel, Richard M Berry, Judith P Armitage, Kai M Thormann
More details from the publisher
More details
More details

The Limiting Speed of the Bacterial Flagellar Motor

(2015)

Authors:

Jasmine A Nirody, Richard M Berry, George Oster
More details from the publisher

Comparison between single-molecule and X-ray crystallography data on yeast F1-ATPase

Scientific Reports Springer Nature 5:1 (2015) 8773

Authors:

BC Steel, AL Nord, Y Wang, V Pagadala, DM Mueller, Richard Berry

Abstract:

Single molecule studies in recent decades have elucidated the full chemo-mechanical cycle of F1-ATPase, mostly based on F1 from thermophilic bacteria. In contrast, high-resolution crystal structures are only available for mitochondrial F1. Here we present high resolution single molecule rotational data on F1 from Saccharomyces cerevisiae, obtained using new high throughput detection and analysis tools. Rotational data are presented for the wild type mitochondrial enzyme, a “liver” isoform, and six mutant forms of yeast F1 that have previously been demonstrated to be less efficient or partially uncoupled. The wild-type and “liver” isoforms show the same qualitative features as F1 from Escherichia coli and thermophilic bacteria. The analysis of the mutant forms revealed a delay at the catalytic dwell and associated decrease in Vmax, with magnitudes consistent with the level of disruption seen in the crystal structures. At least one of the mutant forms shows a previously un-observed dwell at the ATP binding angle, potentially attributable to slowed release of ADP. We discuss the correlation between crystal structures and single molecule results
More details from the publisher
Details from ORA
More details
More details

Mechanics of torque generation in the bacterial flagellar motor

(2015)

Authors:

Kranthi K Mandadapu, Jasmine A Nirody, Richard M Berry, George Oster
More details from the publisher

Composition, formation, and regulation of the cytosolic c-ring, a dynamic component of the type III secretion injectisome

PLoS Biology Public Library of Science 13:1 (2015) e1002039

Authors:

A Diepold, M Kudryashev, NJ Delalez, RM Berry, Judith Armitage

Abstract:

Many gram-negative pathogens employ a type III secretion injectisome to translocate effector proteins into eukaryotic host cells. While the structure of the distal "needle complex" is well documented, the composition and role of the functionally important cytosolic complex remain less well understood. Using functional fluorescent fusions, we found that the C-ring, an essential and conserved cytosolic component of the system, is composed of ~22 copies of SctQ (YscQ in Yersinia enterocolitica), which require the presence of YscQC, the product of an internal translation initiation site in yscQ, for their cooperative assembly. Photoactivated localization microscopy (PALM) reveals that in vivo, YscQ is present in both a free-moving cytosolic and a stable injectisome-bound state. Notably, fluorescence recovery after photobleaching (FRAP) shows that YscQ exchanges between the injectisome and the cytosol, with a t½ of 68 ± 8 seconds when injectisomes are secreting. In contrast, the secretin SctC (YscC) and the major export apparatus component SctV (YscV) display minimal exchange. Under non-secreting conditions, the exchange rate of YscQ is reduced to t½ = 134 ± 16 seconds, revealing a correlation between C-ring exchange and injectisome activity, which indicates a possible role for C-ring stability in regulation of type III secretion. The stabilization of the C-ring depends on the presence of the functional ATPase SctN (YscN). These data provide new insights into the formation and composition of the injectisome and present a novel aspect of type III secretion, the exchange of C-ring subunits, which is regulated with respect to secretion.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet