Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Jupiter's atmosphere

The incredible and intricate details of Jupiter's atmosphere, showing storms and clouds, that we one day hope to image on other worlds beyond our Solar System. Image: Seán Doran Flickr https://www.flickr.com/photos/seandoran

Credit: NASA / SwRI / MSSS / Gerald Eichstädt / Seán Doran

Prof Jayne Birkby

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Instrumentation
  • Exoplanets and planetary physics

Sub department

  • Astrophysics

Research groups

  • Astronomical instrumentation
  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
  • Planet formation and dynamics
  • Planetary surfaces
  • Extremely Large Telescope
jayne.birkby@physics.ox.ac.uk
Denys Wilkinson Building, room 761
Personal research page
  • About
  • Books
  • Publications

Low-mass eclipsing binaries in the WFCAM Transit Survey: the persistence of the M-dwarf radius inflation problem

(2018)

Authors:

Patricia Cruz, Marcos Diaz, Jayne Birkby, David Barrado, Brigitta Sipöcz, Simon Hodgkin
More details from the publisher

Spectroscopic Direct Detection of Exoplanets

Chapter in Handbook of Exoplanets, Springer Nature (2018) 1-24
More details from the publisher

Detecting Proxima b's atmosphere with JWST targeting CO2 at 15 μm using a high-pass spectral filtering technique

Astrophysical Journal IOP Publishing 154:2 (2017) 77

Authors:

Iag Snellen, J-M Désert, Lbfm Waters, T Robinson, V Meadows, Ef van Dishoeck, Br Brand l, T Henning, J Bouwman, F Lahuis, M Min, C Lovis, C Dominik, V Van Eylen, D Sing, G Anglada-Escudé, Jl Birkby, M Brogi

Abstract:

Exoplanet Proxima b will be an important laboratory for the search for extraterrestrial life for the decades ahead. Here, we discuss the prospects of detecting carbon dioxide at 15 μm using a spectral filtering technique with the Medium Resolution Spectrograph (MRS) mode of the Mid-Infrared Instrument (MIRI) on the James Webb Space Telescope (JWST). At superior conjunction, the planet is expected to show a contrast of up to 100 ppm with respect to the star. At a spectral resolving power of R = 1790–2640, about 100 spectral CO2 features are visible within the 13.2–15.8 μm (3B) band, which can be combined to boost the planet atmospheric signal by a factor of 3–4, depending on the atmospheric temperature structure and CO2 abundance. If atmospheric conditions are favorable (assuming an Earth-like atmosphere), with this new application to the cross-correlation technique, carbon dioxide can be detected within a few days of JWST observations. However, this can only be achieved if both the instrumental spectral response and the stellar spectrum can be determined to a relative precision of ≤1 × 10−4 between adjacent spectral channels. Absolute flux calibration is not required, and the method is insensitive to the strong broadband variability of the host star. Precise calibration of the spectral features of the host star may only be attainable by obtaining deep observations of the system during inferior conjunction that serve as a reference. The high-pass filter spectroscopic technique with the MIRI MRS can be tested on warm Jupiters, Neptunes, and super-Earths with significantly higher planet/star contrast ratios than the Proxima system.

More details from the publisher
Details from ORA
More details

Detecting Proxima b's atmosphere with JWST targeting CO2 at 15 micron using a high-pass spectral filtering technique

(2017)

Authors:

I Snellen, J-M Desert, L Waters, T Robinson, V Meadows, E van Dishoeck, B Brandl, T Henning, J Bouwman, F Lahuis, M Min, C Lovis, C Dominik, V Van Eylen, D Sing, G Anglada-Escude, J Birkby, M Brogi
More details from the publisher

Discovery of Water at High Spectral Resolution in the Atmosphere of 51 Peg b

The Astronomical Journal American Astronomical Society 153:3 (2017) 138-138

Authors:

Jl Birkby, RJ de Kok, M Brogi, H Schwarz, Iag Snellen
More details from the publisher
Details from ORA
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Current page 16
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet