Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Test image

Katherine Blundell OBE

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Plasma physics

Sub department

  • Astrophysics

Research groups

  • Global Jet Watch
  • Pulsars, transients and relativistic astrophysics
Katherine.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)73308
Denys Wilkinson Building, room 707
www.GlobalJetWatch.net
orcid.org/0000-0001-8509-4939
  • About
  • Research
  • Gresham Professorship
  • Books
  • Teaching
  • Prizes
  • Publications

The Global Jet Watch

Radio image of the microquasar SS433
The micro quasar SS433
Link to the site

The large-scale structure of 3C 31

ASTR SOC P 250 (2002) 437-442

Authors:

RA Laing, P Parma, M Murgia, L Feretti, G Giovannini, AH Bridle, RA Perley

Abstract:

The results of a multifrequency VLA imaging study of the nearby radio galaxy 3C 31 are briefly summarized. The transition between jets and lobes is much more complex than was apparent from earlier observations, and is associated with significant variations in spectral index. We demonstrate that the known depolarization asymmetry in 3C 31 is caused by foreground Faraday rotation in the halo of the host galaxy, but the details of the associated field and density structure are not yet clear.
More details

The nature of jets: evidence from circular polarization observations

ASTR SOC P 250 (2002) 152-163

Authors:

JFC Wardle, DC Homan

Abstract:

We review recent observations of circularly polarized radiation from AGN made with the VLBA and with the ATCA. We also discuss briefly the detections of the Galactic sources Sgr A* and SS 433. The origin of the circular polarization is still an open question in most cases, and we discuss four possible mechanisms. Detectable circular polarization is a common property of quasars, but not of radio galaxies, and is always associated with the compact core. There is growing evidence that the sign of the circular polarization stays the same over at least 20 - 30 years, suggesting that it is a fundamental property of the jet.
More details

The origin of ultra high energy cosmic rays: where we are now and what the future holds

ASTR SOC P 250 (2002) 117-122

Abstract:

The observational picture for cosmic rays above 10(19) eV is described and the enigma that these results pose is discussed. The existence of particles above 10(20) eV may have an impact on our understanding of magnetic fields in intergalactic space and in possible sources.
More details

The parsec-scale central components of FRI radio galaxies

ASTR SOC P 250 (2002) 100-103

Authors:

P Kharb, P Shastri

Abstract:

A majority of a complete sample of 3CR FR I radio galaxies show unresolved optical nuclear sources on the scales of 0.1 aresec. About half of the 3CR FR II radio galaxies observed with the HST also show Compact Central Cores (CCC). These CCCs have been interpreted as the optical counterparts of the non-thermal radio cores in these radio galaxies (Chiaberge, Capetti & Celotti 1999). We show that the optical flux density of the CCCs in FR Is is correlated with the radio core prominence. This correlation supports the argument of Chiaberge et al. that the CCC radiation is of a non-thermal synchrotron origin, which is relativistically beamed along with the radio emission.
More details

Too hot, too fast or forever young?

ASTR SOC P 250 (2002) 133-136

Authors:

J Dennett-Thorpe, AG de Bruyn

Abstract:

We present the results of a year-long WSRT monitoring campaign for the quasar J 1819+3845. The extreme variations (regularly 10% per minute) axe explained by interstellar scintillation of a source which is no more that 30 microarrseconds in diameter, with a corresponding brightness temperature of similar to 10(13) K.We use the results of this WSRT campaign to infer critical source parameters (size, structure and lifetime). To first order, the changes in the observed scintillation behaviour over the year are interpreted as being due to a peculiar velocity of the scattering plasma (similar to 20 pc distant), and not due to any changes within the source itself. We discus's the source structure on a size of tens of microarcseconds, and illustrate how such a monitoring campaign can yield such, information.
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 64
  • Page 65
  • Page 66
  • Page 67
  • Current page 68
  • Page 69
  • Page 70
  • Page 71
  • Page 72
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet