Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Test image

Katherine Blundell OBE

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics
  • Plasma physics

Sub department

  • Astrophysics

Research groups

  • Global Jet Watch
  • Pulsars, transients and relativistic astrophysics
Katherine.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)73308
Denys Wilkinson Building, room 707
www.GlobalJetWatch.net
orcid.org/0000-0001-8509-4939
  • About
  • Research
  • Gresham Professorship
  • Books
  • Teaching
  • Prizes
  • Publications

The Global Jet Watch

Radio image of the microquasar SS433
The micro quasar SS433
Link to the site

The optically-powerful quasar E1821+643 is associated with a 300-kpc scale FRI radio structure

Astrophys.J. 562 (2001) L5-L8

Authors:

Katherine Blundell, Steve Rawlings

Abstract:

We present a deep image of the optically-powerful quasar E1821+643 at 18cm made with the Very Large Array (VLA). This image reveals radio emission, over 280 kpc in extent, elongated way beyond the quasar's host galaxy. Its radio structure has decreasing surface brightness with increasing distance from the bright core, characteristic of FRI sources (Fanaroff & Riley 1974). Its radio luminosity at 5GHz falls in the classification for `radio-quiet' quasars (it is only 10^23.9 W/Hz/sr; see e.g. Kellermann et al 1994). Its radio luminosity at 151MHz (which is 10^25.3 W/Hz/sr) is at the transition luminosity observed to separate FRIs and FRIIs. Hitherto, no optically-powerful quasar had been found to have a conventional FRI radio structure. For searches at low-frequency this is unsurprising given current sensitivity and plausible radio spectral indices for radio-quiet quasars. We demonstrate the inevitability of the extent of any FRqI radio structures being seriously under-estimated by existing targetted follow-up observations of other optically-selected quasars, which are typically short exposures of z > 0.3 objects, and discuss the implications for the purported radio bimodality in quasars. The nature of the inner arcsec-scale jet in E1821+643, together with its large-scale radio structure, suggest that the jet-axis in this quasar is precessing (cf. Galactic jet sources such as SS433). A possible explanation for this is that its central engine is a binary whose black holes have yet to coalesce. The ubiquity of precession in `radio-quiet' quasars, perhaps as a means of reducing the observable radio luminosity expected in highly-accreting systems, remains to be established.
More details from the publisher
Details from ORA
Details from ArXiV

The optically-powerful quasar E1821+643 is associated with a 300-kpc scale FRI radio structure

(2001)

Authors:

Katherine Blundell, Steve Rawlings
More details from the publisher

Images of an equatorial outflow in SS433

(2001)

Authors:

Katherine Blundell, Amy Mioduszewski, Tom Muxlow, Philipp Podsiadlowski, Michael Rupen
More details from the publisher

On the redshift cut-off for steep-spectrum radio sources

ArXiv astro-ph/0106473 (2001)

Authors:

Matt J Jarvis, Steve Rawlings, Chris J Willott, Katherine M Blundell, Steve Eales, Mark Lacy

Abstract:

We use three samples (3CRR, 6CE and 6C*) selected at low radio frequency to constrain the cosmic evolution in the radio luminosity function (RLF) for the `most luminous' steep-spectrum radio sources. Although intrinsically rare, such sources give the largest possible baseline in redshift for the complete flux-density-limited samples currently available. Using parametric models to describe the RLF which incorporate distributions in radio spectral shape and linear size as well as the usual luminosity and redshift, we find that the data are consistent with a constant comoving space density between z~2.5 and z~4.5. We find this model is favoured over a model with similar evolutionary behaviour to that of optically-selected quasars (i.e. a roughly Gaussian distribution in redshift) with a probability ratio of ~25:1 and ~100:1 for spatially-flat cosmologies with Omega_Lambda = 0 and Omega_Lambda = 0.7 respectively. Within the uncertainties, this evolutionary behaviour may be reconciled with the shallow decline preferred for the comoving space density of flat-spectrum sources by Dunlop & Peacock (1990) and Jarvis & Rawlings (2000), in line with the expectations of Unified Schemes.
Details from ArXiV
More details from the publisher

On the redshift cut-off for steep-spectrum radio sources

(2001)

Authors:

Matt J Jarvis, Steve Rawlings, Chris J Willott, Katherine M Blundell, Steve Eales, Mark Lacy
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 67
  • Page 68
  • Page 69
  • Page 70
  • Current page 71
  • Page 72
  • Page 73
  • Page 74
  • Page 75
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet