Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Crystal structure inside calcium fluoride with an implanted muon
Credit: SJB

Professor Stephen Blundell

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Muons and magnets
Stephen.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)72347
Clarendon Laboratory, room 108
  • About
  • Books
  • Teaching
  • Research
  • Publications

Muons as a probe of magnetism in molecule-based low dimensional magnets

Journal of Physics Condensed Matter 16:40 (2004)

Authors:

T Lancaster, SJ Blundell, FL Pratt, ML Brooks, JL Manson, EK Brechin, C Cadiou, D Low, EJL McInnes, REP Winpenny

Abstract:

We present the results of muon spin relaxation (μ+SR) studies on low dimensional molecular magnet systems. μ+SR measurements have been carried out on the Cu-based chain compounds CuX2(pyz) (where X = Br, Cl, NCS and pyz = pyrazine) as a function of temperature and applied longitudinal magnetic field. Oscillations in the time dependence of the muon polarization, characteristic of magnetic order at two distinct muon sites, are detected in both CuBr2(pyz) (below TN = 3.6(1) K) and CuCl2(pyz) (below TN = 3.2(2) K). No evidence of magnetic order is observed in Cu(NCS)2(pyz) down to 0.35 K. The results are discussed in terms of the estimated Cu-X-Cu and Cu-(pyz)-Cu exchange constants. The theory of μSR in high spin molecule (HSM) systems, which are effectively zero-dimensional magnets, is discussed and results are presented on [Ni 12(chp)12(O2CMe)12(H 2O)6(THF)6] (S = 12), [Mn9O 7(OAc)11(thme)(py)3(H2O) 2] (S = 17/2) and [Fe14(bta)6(O) 6(OMe)18 Cl6] (S ≥ 23). Measurements made in applied longitudinal magnetic fields on HSM materials at dilution refrigerator temperatures strongly suggest that dynamic local magnetic field fluctuations are responsible for the relaxation of the muon spin ensemble. Trends in temperature and field dependent behaviour in these systems, as probed by the muon, are discussed.
More details from the publisher
More details

Ca(2.5)Sr(0.5)GaMn2O8: diamagnetic Ga in control of the structural and electronic properties of a bilayered manganate.

J Am Chem Soc 126:39 (2004) 12517-12527

Authors:

Peter D Battle, Stephen J Blundell, Michael L Brooks, Maryvonne Hervieu, Czeslaw Kapusta, Tom Lancaster, Santhosh P Nair, Colin J Oates, Francis L Pratt, Matthew J Rosseinsky, Rocío Ruiz-Bustos, Marcin Sikora, Christopher A Steer

Abstract:

The temperature dependence of the crystal structure and electronic properties of brownmillerite-like Ca(2.5)Sr(0.5)GaMn(2)O(8) has been studied by neutron powder diffraction and muSR spectroscopy. The results show that short-range 2D magnetic order begins to develop within the perovskite-like bilayers of MnO(6) octahedra approximately 50 K above the 3D Néel temperature of approximately 150 K. The bilayers show a structural response to the onset of magnetism throughout this temperature range whereas the GaO(4) layers that separate the bilayers only respond below the 3D ordering temperature. XANES spectroscopy shows that the sample contains Mn(3+) and Mn(4+) cations in a 1:1 ratio, and the behavior in the region of the Néel transition is interpreted as a local charge ordering. Electron diffraction and high-resolution electron microscopy have been used to show that the local microstructure is more complex than the average structure revealed by neutron diffraction, and that microdomains exist in which the GaO(4) tetrahedra show different orientations. It is argued that the bonding requirements of diamagnetic gallium control the electronic behavior within the perovskite-like bilayers.
More details from the publisher

Ca2.5Sr0.5GaMn2O8: Diamagnetic Ga in control of the structural and electronic properties of a bilayered manganate

Journal of the American Chemical Society 126:39 (2004) 12517-12527

Authors:

PD Battle, SJ Blundell, ML Brooks, M Hervieu, C Kapusta, T Lancaster, SP Nair, CJ Oates, FL Pratt, MJ Rosseinsky, R Ruiz-Bustos, M Sikora, CA Steer

Abstract:

The temperature dependence of the crystal structure and electronic properties of brownmillerite-like Ca2.5Sr0.5GaMn 2O8 has been studied by neutron powder diffraction and μSR spectroscopy. The results show that short-range 2D magnetic order begins to develop within the perovskite-like bilayers of MnO6 octahedra approximately 50 K above the 3D Néel temperature of ∼150 K. The bilayers show a structural response to the onset of magnetism throughout this temperature range whereas the GaO4 layers that separate the bilayers only respond below the 3D ordering temperature. XANES spectroscopy shows that the sample contains Mn3+ and Mn4+ cations in a 1:1 ratio, and the behavior in the region of the Néel transition is interpreted as a local charge ordering. Electron diffraction and high-resolution electron microscopy have been used to show that the local microstructure is more complex than the average structure revealed by neutron diffraction, and that microdomains exist in which the GaO4 tetrahedra show different orientations. It is argued that the bonding requirements of diamagnetic gallium control the electronic behavior within the perovskite-like bilayers.
More details from the publisher
More details

Magnetic phase separation in EuB6 detected by muon spin rotation

Physical Review B - Condensed Matter and Materials Physics 70:2 (2004)

Authors:

ML Brooks, T Lancaster, SJ Blundell, W Hayes, FL Pratt, Z Fisk

Abstract:

We report results of the first muon-spin rotation measurements performed on the low carrier density ferromagnet EuB6. The ferromagnetic state is reached via two magnetic transitions at Tm=15.5 K and T c=12.6 K. Two distinct components are resolved in the muon data, one oscillatory and one non-oscillatory, which arise from different types of magnetic environment, and we have followed the temperature dependence of these components in detail. These results provide evidence for magnetic phase separation and can be interpreted in terms of the gradual coalescing of magnetic polarons.
More details from the publisher
More details

Organic and molecular magnets

Journal of Physics Condensed Matter 16:24 (2004)

Authors:

SJ Blundell, FL Pratt

Abstract:

Historically most materials in magnetic applications are based on inorganic materials. Recently, however, organic and molecular materials have begun to show increasing promise. Purely organic ferromagnets, based upon nitronyl nitroxide radicals, show long range magnetic order at very low temperatures in the region of 1 K, while sulfur based radicals show weak ferromagnetism at temperatures up to 36 K. It is also possible to prepare molecule based magnets in which transition metal ions are used to provide the magnetic moment, but organic groups mediate the interactions. This strategy has produced magnetic materials with a large variety of structures, including chains, layered systems and three-dimensional networks, some of which show ordering at room temperature and some of which have very high coercivity. Even if long range magnetic order is not achieved, the spin crossover effect may be observed, which has important applications. Further magnetic materials may be obtained by constructing charge transfer salts, which can produce metallic molecular magnets. Another development is single-molecule magnets, formed by preparing small magnetic clusters. These materials can show macroscopic quantum tunnelling of the magnetization and may have uses as memory devices or in quantum computation applications.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 112
  • Page 113
  • Page 114
  • Page 115
  • Current page 116
  • Page 117
  • Page 118
  • Page 119
  • Page 120
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet