Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Crystal structure inside calcium fluoride with an implanted muon
Credit: SJB

Professor Stephen Blundell

Professor of Physics

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • Muons and magnets
Stephen.Blundell@physics.ox.ac.uk
Telephone: 01865 (2)72347
Clarendon Laboratory, room 108
  • About
  • Books
  • Teaching
  • Research
  • Publications

Strong H...F hydrogen bonds as synthons in polymeric quantum magnets: structural, magnetic, and theoretical characterization of [Cu(HF2)(pyrazine)2]SbF6, [Cu2F(HF)(HF2)(pyrazine)4](SbF6)2, and [CuAg(H3F4)(pyrazine)5](SbF6)2.

J Am Chem Soc 131:19 (2009) 6733-6747

Authors:

Jamie L Manson, John A Schlueter, Kylee A Funk, Heather I Southerland, Brendan Twamley, Tom Lancaster, Stephen J Blundell, Peter J Baker, Francis L Pratt, John Singleton, Ross D McDonald, Paul A Goddard, Pinaki Sengupta, Cristian D Batista, Letian Ding, Changhoon Lee, Myung-Hwan Whangbo, Isabel Franke, Susan Cox, Chris Baines, Derek Trial

Abstract:

Three Cu(2+)-containing coordination polymers were synthesized and characterized by experimental (X-ray diffraction, magnetic susceptibility, pulsed-field magnetization, heat capacity, and muon-spin relaxation) and electronic structure studies (quantum Monte Carlo simulations and density functional theory calculations). [Cu(HF(2))(pyz)(2)]SbF(6) (pyz = pyrazine) (1a), [Cu(2)F(HF)(HF(2))(pyz)(4)](SbF(6))(2) (1b), and [CuAg(H(3)F(4))(pyz)(5)](SbF(6))(2) (2) crystallize in either tetragonal or orthorhombic space groups; their structures consist of 2D square layers of [M(pyz)(2)](n+) that are linked in the third dimension by either HF(2)(-) (1a and 1b) or H(3)F(4)(-) (2). The resulting 3D frameworks contain charge-balancing SbF(6)(-) anions in every void. Compound 1b is a defective polymorph of 1a, with the difference being that 50% of the HF(2)(-) links are broken in the former, which leads to a cooperative Jahn-Teller distortion and d(x(2))(-y(2)) orbital ordering. Magnetic data for 1a and 1b reveal broad maxima in chi at 12.5 and 2.6 K and long-range magnetic order below 4.3 and 1.7 K, respectively, while 2 displays negligible spin interactions owing to long and disrupted superexchange pathways. The isothermal magnetization, M(B), for 1a and 1b measured at 0.5 K reveals contrasting behaviors: 1a exhibits a concave shape as B increases to a saturation field, B(c), of 37.6 T, whereas 1b presents an unusual two-step saturation in which M(B) is convex until it reaches a step near 10.8 T and then becomes concave until saturation is reached at 15.8 T. The step occurs at two-thirds of M(sat), suggesting the presence of a ferrimagnetic structure. Compound 2 shows unusual hysteresis in M(B) at low temperature, although chi vs T does not reveal the presence of a magnetic phase transition. Quantum Monte Carlo simulations based on an anisotropic cubic lattice were applied to the magnetic data of 1a to afford g = 2.14, J = -13.4 K (Cu-pyz-Cu), and J(perpendicular) = -0.20 K (Cu-F...H...F-Cu), while chi vs T for 1b could be well reproduced by a spin-1/2 Heisenberg uniform chain model for g = 2.127(1), J(1) = -3.81(1), and zJ(2) = -0.48(1) K, where J(1) and J(2) are the intra- and interchain exchange couplings, respectively, which considers the number of magnetic nearest-neighbors (z). The M(B) data for 1b could not be satisfactorily explained by the chain model, suggesting a more complex magnetic structure in the ordered state and the need for additional terms in the spin Hamiltonian. The observed variation in magnetic behaviors is driven by differences in the H...F hydrogen-bonding motifs.
More details from the publisher
More details

Superconductivity: A Very Short Introduction

Oxford University Press (OUP), 2009
More details from the publisher

Structure, antiferromagnetism and superconductivity of the layered iron arsenide NaFeAs.

Chem Commun (Camb) (2009) 2189-2191

Authors:

Dinah R Parker, Michael J Pitcher, Peter J Baker, Isabel Franke, Tom Lancaster, Stephen J Blundell, Simon J Clarke

Abstract:

A new layered iron arsenide NaFeAs isostructural with the superconducting lithium analogue displays evidence for the coexistence of superconductivity and magnetic ordering.
More details from the publisher
More details

Dipole-field distributions in complex magnetic materials

Physica B: Condensed Matter 404:5-7 (2009) 581-584

Abstract:

The probability distribution of local magnetic field values experienced by implanted muons, given no prior information on the muon site, is calculated for various arrangements of magnetic dipoles commonly found in magnetic materials. Such distributions are useful for interpreting μSR data on complex magnetic systems such as molecular magnets where there are many possible muon sites. © 2009 Elsevier B.V. All rights reserved.
More details from the publisher
More details

HiFi-A new high field muon spectrometer at ISIS

Physica B: Condensed Matter 404:5-7 (2009) 978-981

Authors:

Z Salman, PJ Baker, SJ Blundell, SP Cottrell, SR Giblin, AD Hillier, BH Holsman, PJC King, T Lancaster, JS Lord, I McKenzie, J Nightingale, FL Pratt, R Scheuermann

Abstract:

A new μ SR spectrometer (HiFi) is being constructed at the ISIS pulsed muon source. The spectrometer is intended for measurements in longitudinal magnetic fields up to 5 T. Here we discuss various aspects of the design and future operation of the HiFi spectrometer. Detailed analysis of the detector design is presented, and results from tests on detector prototypes are compared to simulations. Potential applications of this spectrometer in the fields of condensed matter and chemistry are also discussed. © 2008 Elsevier B.V. All rights reserved.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 87
  • Page 88
  • Page 89
  • Page 90
  • Current page 91
  • Page 92
  • Page 93
  • Page 94
  • Page 95
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet