Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
A star cluster simulation (credit: Inti Pelupessy)

A star cluster simulation coupling N-body dynamics and stellar evolution using the Astrophysical Multi-purpose Software Environment (credit: Inti Pelupessy).

Dr Tjarda Boekholt

Visitor

Research theme

  • Astronomy and astrophysics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Theoretical astrophysics and plasma physics at RPC
tjarda.boekholt@physics.ox.ac.uk
  • About
  • Research
  • Social Media / Websites
  • Publications

Punctuated chaos and the unpredictability of the Galactic Centre S-star orbital evolution

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 526:4 (2023) 5791-5799

Authors:

Simon F Portegies Zwart, Tjarda CN Boekholt, Douglas C Heggie
More details from the publisher

Punctuated chaos and indeterminism in self-gravitating many-body systems

International Journal of Modern Physics D World Scientific Publishing 32:14 (2023) 2342003

Authors:

Tjarda CN Boekholt, Simon F Portegies Zwart, Douglas C Heggie
More details from the publisher

The paradox of infinitesimal granularity: Chaos and the reversibility of time in Newton’s theory of gravity

AIP Conference Proceedings AIP Publishing 2872:1 (2023) 050003

Authors:

Simon Portegies Zwart, Tjarda Boekholt
More details from the publisher

Black hole binary formation in AGN discs: from isolation to merger

Monthly Notices of the Royal Astronomical Society Oxford University Press 524:2 (2023) 2770-2796

Authors:

Connar Rowan, Tjarda Boekholt, Bence Kocsis, Zoltán Haiman

Abstract:

Motivated by the increasing number of detections of merging black holes by LIGO-VIRGO-KAGRA, black hole (BH) binary mergers in the discs of active galactic nuclei (AGNs) is investigated as a possible merger channel. In this pathway, BH encounters in the gas disc form mutually bound BH binary systems through interaction with the gas in the disc and subsequently inspiral through gravitational torques induced by the local gas. To determine the feasibility of this merger pathway, we present the first three-dimensional global hydrodynamic simulations of the formation and evolution of a stellar-mass BH binaries AGN discs with three different AGN disc masses and five different initial radial separations. These 15 simulations show binary capture of prograde and retrograde binaries can be successful in a range of disc densities including cases well below that of a standard radiatively efficient alpha disc, identifying that the majority of these captured binaries are then subsequently hardened by the surrounding gas. The eccentricity evolution depends strongly on the orbital rotation where prograde binaries are governed by gravitational torques form their circumbinary mini disc, with eccentricities being damped, while for retrograde binaries the eccentricities are excited to >∼ 0.9 by accretion torques. In two cases, retrograde binaries ultimately undergo a close periapsis passage which results in a merger via gravitational waves after only a few thousand binary orbits. Thus, the merger time-scale can be far shorter than the AGN disc lifetime. These simulations support an efficient AGN disc merger pathway for BHs.
More details from the publisher
More details

Stirred, not shaken: star cluster survival in the slingshot scenario

Monthly Notices of the Royal Astronomical Society Oxford University Press 522:3 (2023) 4238-4250

Authors:

Drm Carrillo, M Fellhauer, Tcn Boekholt, A Stutz, McBm Inostroza

Abstract:

We investigate the effects of an oscillating gas filament on the dynamics of its embedded stellar clusters. Motivated by recent observational constraints, we model the host gas filament as a cylindrically symmetrical potential, and the star cluster as a Plummer sphere. In the model, the motion of the filament will produce star ejections from the cluster, leaving star cluster remnants that can be classified into four categories: (a) filament-associated clusters, which retain most of their particles (stars) inside the cluster and inside the filament; (b) destroyed clusters, where almost no stars are left inside the filament, and there is no surviving bound cluster; (c) ejected clusters, that leave almost no particles in the filament, since the cluster leaves the gas filament; and (d) transition clusters, corresponding to those clusters that remain in the filament, but that lose a significant fraction of particles due to ejections induced by filament oscillation. Our numerical investigation predicts that the Orion Nebula cluster is in the process of being ejected, after which it will most likely disperse into the field. This scenario is consistent with observations which indicate that the Orion Nebula cluster is expanding, and somewhat displaced from the integral-shaped filament ridgeline.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet