Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
A star cluster simulation (credit: Inti Pelupessy)

A star cluster simulation coupling N-body dynamics and stellar evolution using the Astrophysical Multi-purpose Software Environment (credit: Inti Pelupessy).

Dr Tjarda Boekholt

Visitor

Research theme

  • Astronomy and astrophysics

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Theoretical astrophysics and plasma physics at RPC
tjarda.boekholt@physics.ox.ac.uk
  • About
  • Research
  • Social Media / Websites
  • Publications

Formation of massive seed black holes via collisions and accretion

Monthly Notices of the Royal Astronomical Society Oxford University Press 476:1 (2018) 366-380

Authors:

TCN Boekholt, Drg Schleicher, M Fellhauer, Rs Klessen, B Reinoso, Am Stutz, L Haemmerle

Abstract:

Models aiming to explain the formation of massive black hole seeds, and in particular the direct collapse scenario, face substantial difficulties. These are rooted in rather ad hoc and fine-tuned initial conditions, such as the simultaneous requirements of extremely low metallicities and strong radiation backgrounds. Here, we explore a modification of such scenarios where a massive primordial star cluster is initially produced. Subsequent stellar collisions give rise to the formation of massive (104−105 M⊙) objects. Our calculations demonstrate that the interplay among stellar dynamics, gas accretion, and protostellar evolution is particularly relevant. Gas accretion on to the protostars enhances their radii, resulting in an enhanced collisional cross-section. We show that the fraction of collisions can increase from 0.1 to 1 per cent of the initial population to about 10 per cent when compared to gas-free models or models of protostellar clusters in the local Universe. We conclude that very massive objects can form in spite of initial fragmentation, making the first massive protostellar clusters viable candidate birth places for observed supermassive black holes.
More details from the publisher
Details from ORA
More details

Dynamical ejections of stars due to an accelerating gas filament

Monthly Notices of the Royal Astronomical Society Oxford University Press 471:3 (2017) 3590-3598

Authors:

Tcn Boekholt, Am Stutz, M Fellhauer, Drg Schleicher, Dr Matus Carrillo

Abstract:

Observations of the Orion A integral shaped filament (ISF) have shown indications of an oscillatory motion of the gas filament. This evidence is based on both thewave-likemorphology of the filament and the kinematics of the gas and stars, where the characteristic velocities of the stars require a dynamical heating mechanism. As proposed by Stutz & Gould, such a heating mechanism (the 'Slingshot') may be the result of an oscillating gas filament in a gas-dominated (as opposed to stellar-mass dominated) system. Here we test this hypothesis with the first stellar-dynamical simulations in which the stars are subjected to the influence of an oscillating cylindrical potential. The accelerating, cylindrical background potential is populated with a narrow distribution of stars. By coupling the potential to N-body dynamics, we are able to measure the influence of the potential on the stellar distribution. The simulations provide evidence that the slingshot mechanism can successfully reproduce several stringent observational constraints. These include the stellar spread (both in projected position and in velocity) around the filament, the symmetry in these distributions, and a bulkmotion of the stars with respect to the filament. Using simple considerations, we show that star-star interactions are incapable of reproducing these spreads on their own when properly accounting for the gas potential. Thus, properly accounting for the gas potential is essential for understanding the dynamical evolution of star-forming filamentary systems in the era of Gaia (GaiaCollaboration 2016).
More details from the publisher
Details from ORA
More details

The binarity of the local white dwarf population

Astronomy and Astrophysics EDP Sciences 602 (2017) A16

Authors:

S Toonen, M Hollands, Bt Gansicke, T Boekholt

Abstract:

Context. As endpoints of stellar evolution, white dwarfs (WDs) are powerful tools to study the evolutionary history of the Galaxy. In particular, the multiplicity of WDs contains information regarding the formation and evolution of binary systems.

Aims. Can we understand the multiplicity of the local WD sample from a theoretical point of view? Population synthesis methods are often applied to estimate stellar space densities and event rates, but how well are these estimates calibrated? This can be tested by a comparison with the 20 pc sample, which contains ≃100 stars and is minimally affected by selection biases.

Methods. We model the formation and evolution of single stars and binaries within 20 pc with a population synthesis approach. We construct a model of the current sample of WDs and differentiate between WDs in different configurations, that is single WDs, and resolved and unresolved binaries containing a WD with either a main-sequence (MS) component or with a second WD. We also study the effect of different assumptions concerning the star formation history, binary evolution, and the initial distributions of binary parameters. We compile from the literature the available information on the sample of WDs within 20 pc, with a particular emphasis on their multiplicity, and compare this to the synthetic models.

Results. The observed space densities of single and binary WDs are well reproduced by the models. The space densities of the most common WD systems (single WDs and unresolved WD-MS binaries) are consistent within a factor two with the observed value. We find a discrepancy only for the space density of resolved double WDs. We exclude that observational selection effects, fast stellar winds, or dynamical interactions with other objects in the Milky Way explain this discrepancy. We find that either the initial mass ratio distribution in the solar neighbourhood is biased towards low mass-ratios, or more than ten resolved DWDs have been missed observationally in the 20 pc sample. Furthermore, we show that the low binary fraction of WD systems (~25%) compared to solar-type MS-MS binaries (~50%) is consistent with theory, and is mainly caused by mergers in binary systems, and to a lesser degree by WDs hiding in the glare of their companion stars. Lastly, Gaia will dramatically increase the size of the volume-limited WD sample, detecting the coolest and oldest WDs out to ≃50 pc. We provide a detailed estimate of the number of single and binary WDs in the Gaia sample.

More details from the publisher
Details from ORA
More details

The origin of chaos in the orbit of comet 1P/Halley

Monthly Notices of the Royal Astronomical Society Oxford University Press 461:4 (2016) 3576-3584

Authors:

TCN Boekholt, Fi Pelupessy, Dc Heggie, SF Portegies Zwart

Abstract:

According to Muñoz-Gutiérrez et al. the orbit of comet 1P/Halley is chaotic with a surprisingly small Lyapunov time-scale of order its orbital period. In this work we analyse the origin of chaos in Halley's orbit and the growth of perturbations, in order to get a better understanding of this unusually short time-scale. We perform N-body simulations to model Halley's orbit in the Solar system and measure the separation between neighbouring trajectories. To be able to interpret the numerical results, we use a semi-analytical map to demonstrate different growth modes, i.e. linear, oscillatory or exponential, and transitions between these modes. We find the Lyapunov time-scale of Halley's orbit to be of order 300 yr, which is significantly longer than previous estimates in the literature. This discrepancy could be due to the different methods used to measure the Lyapunov time-scale. A surprising result is that next to Jupiter, also encounters with Venus contribute to the exponential growth in the next 3000 yr. Finally, we note an interesting application of the sub-linear, oscillatory growth mode to an ensemble of bodies moving through the Solar system. Whereas in the absence of encounters with a third body the ensemble spreads out linearly in time, the accumulation of weak encounters can increase the lifetime of such systems due to the oscillatory behaviour.
More details from the publisher
Details from ORA
More details

The evolution of the Sun's birth cluster and the search for the solar siblings with Gaia

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 457:1 (2016) 1062-1075

Authors:

CA Martínez-Barbosa, AGA Brown, T Boekholt, S Portegies Zwart, E Antiche, T Antoja
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Current page 8
  • Page 9
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet