Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Clarendon Laboratory and Beecroft Building

Andrew Boothroyd

Interim Head of Department

Research theme

  • Quantum materials

Sub department

  • Condensed Matter Physics

Research groups

  • X-ray and neutron scattering
Andrew.Boothroyd@physics.ox.ac.uk
Telephone: 01865 (2)72376
Clarendon Laboratory, room 172,175,377
ORCID ID 0000-0002-3575-7471
ResearcherID AAA-7883-2021
  • About
  • News
  • Research
  • Teaching
  • Prizes, awards and recognition
  • Software
  • Vacancies
  • Publications

Textbook

Principles of Neutron Scattering from Condensed Matter
Principles of Neutron Scattering from Condensed Matter

Published by Oxford University Press in July 2020

Buy now

Room-temperature type-II multiferroic phase induced by pressure in cupric oxide

Acta Crystallographica Section A: Foundations and advances International Union of Crystallography (IUCr) 79:a2 (2023) c1213-c1213

Authors:

Noriki Terada, Dmitry D Khalyavin, Pascal Manuel, Fabio Orlandi, Christopher J Ridley, Craig L Bull, Ryota Ono, Igor Solovyev, Takashi Naka, Dharmalingam Prabhakaran, Andrew T Boothroyd
More details from the publisher
More details

High-energy spin waves in the spin-1 square-lattice antiferromagnet La2NiO4

Physical Review Research American Physical Society 5:3 (2023) 033113

Authors:

An Petsch, Ns Headings, D Prabhakaran, Ai Kolesnikov, Cd Frost, At Boothroyd, R Coldea, Sm Hayden

Abstract:

Inelastic neutron scattering is used to study the magnetic excitations of the S=1 square-lattice antiferromagnet La2NiO4. We find that the spin waves cannot be described by a simple classical (harmonic) Heisenberg model with only nearest-neighbor interactions. The spin-wave dispersion measured along the antiferromagnetic Brillouin-zone boundary shows a minimum energy at the (1/2,0) position as is observed in some S=1/2 square-lattice antiferromagnets. Thus, our results suggest that the quantum dispersion renormalization effects or longer-range exchange interactions observed in cuprates and other S =1/2 square-lattice antiferromagnets are also present in La2NiO4. We also find that the overall intensity of the spin-wave excitations is suppressed relative to linear spin-wave theory, indicating that covalency is important. Two-magnon scattering is also observed.

More details from the publisher
Details from ORA
More details

Understanding unconventional magnetic order in a candidate axion insulator by resonant elastic x-ray scattering

Nature Communications Springer Nature 14:1 (2023) 3387

Authors:

Jian-Rui Soh, Alessandro Bombardi, Frédéric Mila, Marein C Rahn, Dharmalingam Prabhakaran, Sonia Francoual, Henrik M Rønnow, Andrew Boothroyd

Abstract:

Magnetic topological insulators and semimetals are a class of crystalline solids whose properties are strongly influenced by the coupling between non-trivial electronic topology and magnetic spin configurations. Such materials can host exotic electromagnetic responses. Among these are topological insulators with certain types of antiferromagnetic order which are predicted to realize axion electrodynamics. Here we investigate the highly unusual helimagnetic phases recently reported in EuIn2As2, which has been identified as a candidate for an axion insulator. Using resonant elastic x-ray scattering we show that the two types of magnetic order observed in EuIn2As2 are spatially uniform phases with commensurate chiral magnetic structures, ruling out a possible phase-separation scenario, and we propose that entropy associated with low energy spin fluctuations plays a significant role in driving the phase transition between them. Our results establish that the magnetic order in EuIn2As2 satisfies the symmetry requirements for an axion insulator.
More details from the publisher
Details from ORA
More details
More details

Magnetic excitations in the topological semimetal YbMnSb2

Physical Review B American Physical Society 107:19 (2023) 195146

Authors:

Siobhan M Tobin, Jian-Rui Soh, Hao Su, Andrea Piovano, Anne Stunault, J Alberto Rodríguez-Velamazán, Yanfeng Guo, Andrew T Boothroyd

Abstract:

We report neutron scattering measurements on YbMnSb2 which shed light on the nature of the magnetic moments and their interaction with Dirac fermions. Using half-polarized neutron diffraction we measured the field-induced magnetization distribution in the paramagnetic phase and found that the magnetic moments are well localized on the Mn atoms. Using triple-axis neutron scattering we measured the magnon spectrum throughout the Brillouin zone in the antiferromagnetically ordered phase, and we determined the dominant exchange interactions from linear spin-wave theory. The analysis shows that the interlayer exchange is five times larger than in several related compounds containing Bi instead of Sb. We argue that the coupling between the Mn local magnetic moments and the topological band states is more important in YbMnSb2 than in the Bi compounds.

More details from the publisher
Details from ORA

Weyl metallic state induced by helical magnetic order

(2023)

Authors:

Jian-Rui Soh, Irián Sánchez-Ramírez, Xupeng Yang, Jinzhao Sun, Ivica Zivkovic, J Alberto Rodríguez-Velamazán, Oscar Fabelo, Anne Stunault, Alessandro Bombardi, Christian Balz, Manh Duc Le, Helen C Walker, J Hugo Dil, Dharmalingam Prabhakaran, Henrik M Rønnow, Fernando de Juan, Maia G Vergniory, Andrew T Boothroyd
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet