Magnetic monopole density and antiferromagnetic domain control in spin-ice iridates
Nature Communications Springer Nature 13:1 (2022) 444
Abstract:
Magnetically frustrated systems provide fertile ground for complex behaviour, including unconventional ground states with emergent symmetries, topological properties, and exotic excitations. A canonical example is the emergence of magnetic-charge-carrying quasiparticles in spin-ice compounds. Despite extensive work, a reliable experimental indicator of the density of these magnetic monopoles is yet to be found. Using measurements on single crystals of Ho2Ir2O7 combined with dipolar Monte Carlo simulations, we show that the isothermal magnetoresistance is highly sensitive to the monopole density. Moreover, we uncover an unexpected and strong coupling between the monopoles on the holmium sublattice and the antiferromagnetically ordered iridium ions. These results pave the way towards a quantitative experimental measure of monopole density and demonstrate the ability to control antiferromagnetic domain walls using a uniform external magnetic field, a key goal in the design of next-generation spintronic devices.Real Space Imaging of Spin Stripe Domain Fluctuations in a Complex Oxide
Physical Review Letters American Physical Society (APS) 127:27 (2021) 275301
A model for coupled $4f-3d$ magnetic spectra: a neutron scattering study of the Yb$-$Fe hybridisation in Yb$_3$Fe$_5$O$_{12}$
(2021)
Magnetic structure of the topological semimetal YbMnSb2
Physical Review B American Physical Society 104:16 (2021) L161103
Abstract:
The antiferromagnetic (AFM) semimetal YbMnSb2 has recently been identified as a candidate topological material, driven by time-reversal symmetry breaking. Depending on the ordered arrangement of Mn spins below the Néel temperature, TN = 345 K, the electronic bands near the Fermi energy can either have a Dirac node, a Weyl node, or a nodal line. We have investigated the ground state magnetic structure of YbMnSb2 using unpolarized and polarized single crystal neutron diffraction. We find that the Mn moments lie along the c axis of the P4/nmm space group and are arranged in a C-type AFM structure, which implies the existence of gapped Dirac nodes near the Fermi level. The results highlight how different magnetic structures can critically affect the topological nature of fermions in semimetals.The magnetic structure of the topological semimetal Co$_3$Sn$_2$S$_2$
(2021)