Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Simulated proton image of magnetic fields in a turbulent laser-plasma
Credit: Adapted from Bott et al., "Proton imaging of stochastic magnetic fields". J. Plasma Phys. 83 (2017)

Dr Archie Bott

UKRI Future Leaders Fellow

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
  • Theoretical astrophysics and plasma physics at RPC
archie.bott@physics.ox.ac.uk
  • About
  • Publications

Efficient ion re-acceleration in laboratory-produced interpenetrating collisionless shocks

(2025)

Authors:

W Yao, I Cohen, P Suarez Gerona, H Ahmed, AFA Bott, SN Chen, M Cook, R Lelièvre, P Martin, T Waltenspiel, P Antici, J Béard, M Borghesi, D Caprioli, A Ciardi, E d'Humières, M François, L Gremillet, A Marcowith, M Miceli, T Seebaruth, S Orlando, J Fuchs
More details from the publisher

Cosmic-ray transport in inhomogeneous media

(2025)

Authors:

Robert J Ewart, Patrick Reichherzer, Shuzhe Ren, Stephen Majeski, Francesco Mori, Michael L Nastac, Archie FA Bott, Matthew W Kunz, Alexander A Schekochihin
More details from the publisher

Thermodynamics and collisionality in firehose-susceptible high-$β$ plasmas

(2025)

Authors:

AFA Bott, MW Kunz, E Quataert, J Squire, L Arzamasskiy
More details from the publisher
Details from ArXiV

Modeling transport in weakly collisional plasmas using thermodynamic forcing

(2025)

Authors:

Prakriti Pal Choudhury, Archie FA Bott
More details from the publisher

Collisional whistler instability and electron temperature staircase in inhomogeneous plasma

Journal of Plasma Physics Cambridge University Press (CUP) 91:2 (2025) E45

Authors:

Na Lopez, Afa Bott, Aa Schekochihin

Abstract:

<jats:p>High-beta magnetised plasmas often exhibit anomalously structured temperature profiles, as seen from galaxy cluster observations and recent experiments. It is well known that when such plasmas are collisionless, temperature gradients along the magnetic field can excite whistler waves that efficiently scatter electrons to limit their heat transport. Only recently has it been shown that parallel temperature gradients can excite whistler waves also in collisional plasmas. Here, we develop a Wigner–Moyal theory for the collisional whistler instability starting from Braginskii-like fluid equations in a slab geometry. This formalism is necessary because, for a large region in parameter space, the fastest-growing whistler waves have wavelengths comparable to the background temperature gradients. We find additional damping terms in the expression for the instability growth rate involving inhomogeneous Nernst advection and resistivity. They (i) enable whistler waves to re-arrange the electron temperature profile via growth, propagation and subsequent dissipation, and (ii) allow non-constant temperature profiles to exist stably. For high-beta plasmas, the marginally stable solutions take the form of a temperature staircase along the magnetic field lines. The electron heat flux can also be suppressed by the Ettingshausen effect when the whistler intensity profile is sufficiently peaked and oriented opposite the background temperature gradient. This mechanism allows cold fronts without magnetic draping, might reduce parallel heat losses in inertial fusion experiments and generally demonstrates that whistler waves can regulate transport even in the collisional limit.</jats:p>
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet