Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Simulated proton image of magnetic fields in a turbulent laser-plasma
Credit: Adapted from Bott et al., "Proton imaging of stochastic magnetic fields". J. Plasma Phys. 83 (2017)

Dr Archie Bott

UKRI Future Leaders Fellow

Research theme

  • Lasers and high energy density science
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
  • Theoretical astrophysics and plasma physics at RPC
archie.bott@physics.ox.ac.uk
  • About
  • Publications

Retrieving fields from proton radiography without source profiles

(2019)

Authors:

MF Kasim, AFA Bott, P Tzeferacos, DQ Lamb, G Gregori, SM Vinko
More details from the publisher

Supersonic plasma turbulence in the laboratory

Nature Communications Nature Research 10 (2019) 1758

Authors:

TG White, MT Oliver, P Mabey, AFA Bott, AA Schekochihin, Gianluca Gregori
More details from the publisher
Details from ORA
More details
More details

The Thomson scattering cross section in a magnetized, high density plasma

(2019)

Authors:

Archie FA Bott, Gianluca Gregori
More details from the publisher
Details from ArXiV

Analytical estimates of proton acceleration in laser-produced turbulent plasmas

Journal of Plasma Physics Cambridge University Press 84:6 (2018) 905840608

Authors:

Konstantin Beyer, B Reville, Archie Bott, H-S Park, Subir Sarkar, Gianluca Gregori

Abstract:

With the advent of high power lasers, new opportunities have opened up for simulating astrophysical processes in the laboratory. We show that 2nd-order Fermi acceleration can be directly investigated at the National Ignition Facility, Livermore. This requires measuring the momentumspace diffusion of 3 MeV protons produced within a turbulent plasma generated by a laser. Treating Fermi acceleration as a biased diffusion process, we show analytically that a measurable broadening of the initial proton distribution is then expected for particles exiting the plasma.
More details from the publisher
Details from ORA
More details
More details
Details from ArXiV

Implementation of a Faraday rotation diagnostic at the OMEGA laser facility

High Power Laser Science and Engineering Cambridge University Press 6:2018 (2018) e49

Authors:

Alexander Rigby, Archie Bott, Thomas White, Petros Tzeferacos, DQ Lamb, DH Froula, Gianluca Gregori

Abstract:

Magnetic field measurements in turbulent plasmas are often difficult to perform. Here we show that for ⩾ kG magnetic fields, a time-resolved Faraday rotation measurement can be made at the OMEGA laser facility. This diagnostic has been implemented using the Thomson scattering probe beam and the resultant path-integrated magnetic field has been compared with that of proton radiography. Accurate measurement of magnetic fields is essential for satisfying the scientific goals of many current laser–plasma experiments.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Current page 9
  • Page 10
  • Page 11
  • Page 12
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet